Electron Spin Resonance Spectrum of an Intermediate in the Reduction of Benzoic Acid by e⁻_{soly}

By A. R. BUICK, T. J. KEMP, G. T. NEAL, and T. J. STONE*

(School of Molecular Sciences, University of Warwick, Coventry, CV4 7AL)

NUMEROUS accounts¹ have appeared of e.s.r. spectra produced by the rapid oxidation of organic molecules in continuous-flow systems by powerful one-equivalent oxidants. We report one example of a continuous-flow reduction using the most effective reductant e_{solv} , in liquid ammonia to produce a new, simple aromatic radical anion.

When 10^{-2} M solutions of both PhCO₂H and sodium in liquid ammonia are mixed continuously (flow rate 4-5 cm.³ sec.⁻¹) in the cavity of an e.s.r. spectrometer in a multicapillary mixing device based on a design of Moskowitz and Bowman,² the spectrum shown (Figure) is obtained. This has been analysed in terms of two equivalent protons of one kind (a 4·2 Oe), two equivalent protons of a second kind (a 0·82 Oe), and one further proton (a 7·7 Oe), and a computer-simulated spectrum based on these coupling constants is presented. The g value of the spectrum is 2·0034. In view of the extensive ionisation of the acid in liquid ammonia we assign the spectrum to the PhCO₂²⁻. ion.

While e.s.r. spectra of the species $X-C_6H_4-CO_2^{2-}$ obtained by the reduction of $X-C_6H_4-CO_2H$ are well-documented in cases where X is sufficiently electron-attracting to stabilise the radical anion $PhX^{-} \cdot (e.g. X = NO_2^{,3} X = CN_4^4 X = CO_2R^5)$, it is only recently that accounts have appeared of unsubstituted analogues. Bennett and Gale⁶ report that $PhCO_2H^{-}$ prepared in a solid matrix by the rotating-cryostat method, is characterised by a spectrum consisting of a poorly resolved basic quartet (a 5.8 Oe), which they assign on the basis of approximately equal splittings from the o- and p-protons. However, the similar radical, $PhCO_2Me^{-}$, prepared by Hirayama⁷ by electrolytic reduction, shows a quite different pattern of coupling constants $(a_2 \ 4\cdot 20, \ a_3 \ 0\cdot 94, \ a_4 \ 7\cdot 64, \ and \ a_{Me} \ 0\cdot 94 \ Oe)$, as do the phthalate half-ester diamion radicals,⁵ RO₂C·C₆H₄·CO₂²⁻ (for R = Me,

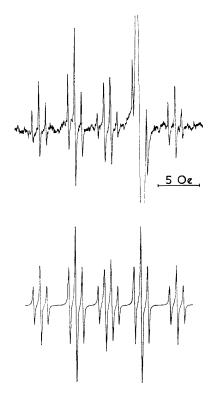


FIGURE. The e.s.r. spectrum (top) of $PhCO_2^{2-}$ in liquid ammonia. The strong signal (g = 2.0011) on the right is due to e_{-Bolv} . The computer simulation (bottom) is based on coupling constants given in the text.

 a_2 3.68, a_3 0.88, and a_4 7.35 Oe). Our results are in good agreement with those of Hirayama and Nelsen and indicate that the radicals have a spindensity distribution more similar to, say, the benzonitrile anion⁴ (a_2 3.6, a_3 0.30, and a_4 8.42 Oe in dimethylformamide), than to the benzyl radical⁸ $(a_2 5.17, a_3 1.77, and a_4 6.19 \text{ Oe})$ as suggested by Bennett and Gale.

(Received, August 14th, 1968; Com. 1127.)

¹ E.g. T. J. Stone and W. A. Waters, Proc. Chem. Soc., 1962, 253; W. T. Dixon and R. O. C. Norman, J. Chem. Soc., ¹⁹⁶³, 3119.
² G. W. Moskowitz and R. L. Bowman, *Science*, 1966, 153, 428.
³ R. D. Allendoerfer and P. H. Rieger, *J. Chem. Phys.*, 1967, 46, 3266.
⁴ P. H. Rieger, I. Bernal, W. H. Reinmuth, and G. K. Fraenkel, *J. Amer. Chem. Soc.*, 1963, 85, 683.

- ⁵ S. F. Nelsen, Tetrahedron Letters, 1967, 3795.
- ⁶ J. E. Bennett and L. H. Gale, Trans. Faraday Soc., 1968, 64, 1174.
- ⁷ N. Hirayama, Bull. Chem. Soc. Japan, 1967, 40, 1822.
 ⁸ H. Fischer, Z. Naturforsch., 1965, 20a, 488.