By BRIAN M. LYNCH

(Department of Medical Chemistry, John Curtin School of Medical Research, Australian National University, Canberra, Australia)

REES and GREEN¹ have reported that they were unable to find any correlation between theoretically calculated π -electron densities and ¹³C chemical shifts in pyrazoles. In view of our success² in relating calculated π -electron densities for the diazoles with the proton chemical shifts, and the correlations noted by Weigert and Roberts³ Weigert and Roberts (see the Table). The slope of the relationship (ca. 130 p.p.m./electron) is comparable to that noted for some charged carbocyclic aromatic species.⁵ The proton shifts for these compounds in trifluoroacetic acid also show linear correlations with the MO π -electron densities; furthermore, tetrazole, which exhibits

Carbon-13 and proton chemical shifts of diazoles, triazoles, and tetrazole and MO π -electron densities

Position on nucleus	Species	Carbon-13 shift (p.p.m. upfield from CS_2) ^{3,a} δ_C	Proton shift (p.p.m. downfield from tetramethylsilane, for CF_3CO_2H solutions) δ_H	$\begin{array}{c} \text{MO} \\ \pi\text{-electron} \\ \text{density} \\ q_{\pi} \end{array}$
4	Pyrazole	88.1	6.95%	1.137
4	Imidazole	71.0	7·53°	1.067
4	1,2,3-Triazole	62.4	7.90	0.980
3	Pyrazole	59.5	8.25	0.973
2	Imidazole	57.1	8.670	0.907
3	1,2,4-Triazole	45.2	8.80	0.835
5	Tetrazole	48 .8°	9.12	0.813

^a Solvent, acetone except where noted. ^b Ref. 2.

^c In dimethyl sulphoxide, therefore excluded from correlations as not comparable.

 $\delta_{\rm C} = -64.88 + 131.0 \ q_{\pi} \ (r = 0.974, \ 6 \ {\rm points}).$ $\delta_{\rm H} = 14.32 - 6.41 \ q_{\pi} \ (r = 0.984, \ 7 \ {\rm points}).$

between the $2p_z$ atomic populations from extended Huckel calculations (which reflect π -electron distributions) and the ¹³C chemical shifts, these results appear surprising. This discrepancy may arise if the calculations cited by Rees and Green employed parameters for two types of nitrogen atom, while I only considered a single heteroatom, as exchange renders all the nitrogens equivalent on the n.m.r. time scale.

A good linear relationship (correlation coefficient: 0.974) is found between the π -electron densities calculated for the diazoles and triazoles by the simple MO method⁴ (with the nitrogen electronegativity parameter set at +1 for all nitrogen atoms) and the 13C chemical shifts of abnormal carbon shielding in terms of correlations with extended Huckel calculations or with MO results, shows a proton shift in agreement with the calculated MO π -electron densities.

The results suggest very strongly that the ¹³C and proton chemical shifts in these five-membered azoles are determined by the same factors: namely, the π -electron densities. Further, the simple MO method seems as valid a predictor of the order of chemical shifts as the extended Huckel technique.

I thank the National Research Council of Canada for a Senior Research Fellowship and for financial support.

(Received, July 31st, 1968; Com. 1048.)

¹ R. G. Rees and M. J. Green, J. Chem. Soc. (B), 1968, 387. ² B. M. Lynch and H. J. M. Dou, Tetrahedron Letters 1966, 2627.

<sup>F. J. Weigert and J. D. Roberts, J. Amer. Chem. Soc., 1968, 90, 3543.
A. Streitwieser, "Molecular Orbital Theory for Organic Chemists", Wiley, New York, 1961, p. 33.</sup>

⁵ H. Spiesecke and W. G. Schneider, Tetrahedron Letters, 1961, 468.