1347

Trimethylsilyl Isocyanide

By M. R. BOOTH and S. G. FRANKISS*

(William Ramsev and Ralph Forster Laboratories, University College, London, W.C.1)

THERE has been considerable speculation, but little experimental evidence concerning the existence of trimethylsilyl isocyanide.¹⁻³ The predominant species in the liquid prepared from the reaction of Me₃SiBr with AgCN (referred to as Me₃Si[CN]) is the cyanide,⁴ but a variable-temperature study of the i.r. spectrum of the liquid has indicated that it contains a small amount (*ca.* 10% at room temperature) of the isocyanide in labile equilibrium with the cyanide.⁵ The isocyanide was identified only from a weak i.r. band near 2100 cm.⁻¹, which was assigned to the NC stretch. It has been suggested that this band may be a combination tone in the cyanide,² or even a "hot band" associated with the CN stretch in the cyanide.³ We find, however, that this band comes from a second species in equilibrium with the cyanide, and which is almost certainly the isocyanide (Me₃SiNC). This is believed to be the first definitive evidence for a simple inorganic isocyanide.

Pure Me₃Si[CN] was introduced into a Perkin-Elmer variable path-length 10 m. gas cell, fitted into a Perkin-Elmer 225 spectrophotometer, after the cell had been thoroughly evacuated and dried. A series of spectra were recorded at room temperature in the range 1850—2250 cm.⁻¹, with gradually increasing and then decreasing sample pressure (see Figure). At low pressure (spectrum A) only the weak 1906, 1966, 2030, and 2128 cm.-1 bands (which are combination tones in Me₃SiCN) and the

FIG ur. -1: Pati succ оγγ

Molecule	Fundamental	cm1
Me ₃ SiCN (vapour)	CN stretch	2198
Me ₃ SiNC (vapour)	NC stretch	2095

strong 2198 cm.-1 band (the CN stretch in Me₃SiCN) were observed. When the pressure was increased a band at 2095 cm.-1 was observed to increase markedly in intensity relative to the combination tones (spectra B and C). On reducing the pressure the relative intensities of the 2095 cm.-1 band and the combination tones remained approximately the same; in the final spectrum D it is seen that the intensity of the 2095 cm.-1 band relative to that at 2198 cm.-1 has increased significantly when compared with the initial spectrum A. This nonreversible change of relative intensities (which shows that the 2095 cm.⁻¹ band

is not pressure-induced) was reproduced several times using different samples in different spectrophotometers. It shows that the 2095 cm.⁻¹ band cannot be a combination tone or a "hot band", but it must come from a second species in Me₃Si[CN] which appears to be preferentially adsorbed on the interior optics or walls of the gas cell. The variable-temperature study of Me₃Si[CN] has shown that this second form is in labile equilibrium with the cyanide.5

We have recorded the i.r. spectra of Me₃Si[CN] vapour prepared from both ¹³C- and ¹⁵N-enriched AgCN in order to confirm that the 2095 cm.⁻¹ band is not a combination tone, and to determine its origin. Our results are summarized in the Table. The large shift of the 2095 cm.⁻¹ band on ¹³C- and on ¹⁵N-isotopic substitution shows that it must be a CN stretch of an isocyanide group. The possibility that the 2095 cm.⁻¹ band comes from HCN is eliminated by the absence of an i.r. band near 3312 cm.-1. A simple calculation of the ¹³C and ¹⁵N isotopic shifts of the [CN] stretch in Me₃SiCN, assuming a triatomic SiCN model with a harmonic valence force field and no interaction force constants gives very satisfactory agreement with the r calculahifts that the 2095 trong

¹³ C shift (cm. ⁻¹)		¹⁵ N shift (cm. ⁻¹)	
calc.	obs.	calc.	obs.
-51	-51	- 30	-31
40	-43	- 36	-35

evidence that the 2095 cm.⁻¹ band is the NC stretch in Me₃SiNC.

The temperature dependence of the absorbance maxima of the 2190 and 2095 cm.-1 bands in liquid Me₃Si[CN] has been re-examined. If it is assumed that they obey the Beer-Lambert law, and that $\Delta G^{\circ} = -RT \ln Kp$, then a plot of 1/Tagainst $\ln(A_{2190}/A_{2100})$ gives $\Delta H^{\circ} = 4.1 \pm 0.2$ kcal./mole for the reaction $Me_3SiCN \rightleftharpoons Me_3SiNC$. Using an estimate of $\Delta S^{\circ} = 0.7$ e.u. for this reaction, we find that Me₃Si[CN] at 25° contains only 0.2% (mole/mole) of Me₃SiNC.

(Received, August 7th, 1968; Com. 1098.)

- ² E. A. V. Ebsworth, "Volatile Silicon Compounds", Pergamon, London, 1963.
- ³ D. F. Shriver, Structure and Bonding, 1966, 1, 32.
- ⁴ H. R. Linton and E. R. Nixon, J. Chem. Phys., 1958, 28, 990.
 ⁵ T. A. Bither, W. H. Knoth, R. V. Lindsey, and W. H. Sharkey, J. Amer. Chem. Soc., 1958, 80, 4141.

100-Α Transmission 100-C

m1	band	in the	Table,	thus	providing	st
13C s	shift (c	m1)		^{15}N	shift (cm1	¹)
calc.		obs.		calc.	o	bs.
-51		-51		-30	-	- 31
-40		-43		- 36	-	- 35

\Y`V	V
0 2200 2000	2200 2000
cm1	cm.—I
URE. The i.r. spectrum h length, 1·25 m.; spectr cessive vapour pressures: A	al slit width, 1.3 cm.

	stants, gives	very satisia	iciory agr	eement
	observed shif	ts in the I	Table. A	similar
	tion for a Si	NC model	gives isot	topic sh
	agree very w	ell with the	ose observ	ved for
	cm1 band i	n the Tabl	le, thus p	orovidir
Тав	LE			
	¹³ C shift (cm	. ⁻¹)	¹⁵ N s	hift (cm
	calc.	obs.	calc.	

¹C. Eaborn, "Organosilicon Compounds", Butterworths, London, 1960.