π-Complexes of the Group V Metals with Diphenylacetylene. Crystal Structure of Dicarbonylbiscyclopentadienylbis- μ-diphenylacetylenediniobium

By A. N. Nesmeyanov, A. I. Gusev,* A. A. Pasynskif, K. N. Anisimov, N. E. Kolobova, and Yu. T. Struchkov
(Institute of Organo-element Compounds, Academy of Science of the U.S.S.R., Vavilova, 28, Moscow, U.S.S.R.)

We have reported ${ }^{1}$ that when $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})_{4}$ is irradiated with ultraviolet light in the presence of diphenylacetylene (tolan), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})_{2} \mathrm{Ph}_{2} \mathrm{C}_{2}$ is formed. Further photochemical reactions of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})_{4} \quad(\mathrm{M}=\mathrm{V}, \mathrm{Nb}$, or Ta$)$ with tolan gave $\quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~V}(\mathrm{CO})_{2} \mathrm{Ph}_{2} \mathrm{C}_{2}, \quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~V}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2},{ }^{2}$ $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2}$, and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ta}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2}{ }^{3}$ From these complexes, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~V}(\mathrm{CO})_{2}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right)$, $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO}) \mathrm{Ph}_{2} \mathrm{C}_{2}\right]_{2}, \quad\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ta}(\mathrm{CO}) \mathrm{Ph}_{2} \mathrm{C}_{2}\right]_{2},{ }^{2}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{3},{ }^{3}$ were synthesised in the absence of u.v.-irradiation. For certain of these complexes, a preliminary X-ray study has been published. ${ }^{4}$

Now we report the results of an X-ray study of $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO}) \mathrm{Ph}_{2} \mathrm{C}_{2}\right]_{2}$ (I) (m.p. 248- 250° decomp.), which is formed, as air-stable, dark violet prisms, by heating (80°) a concentrated solution of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})_{2} \mathrm{Ph}_{2} \mathrm{C}_{2}$ in toluene. According to cryoscopic data, the complex (I) is dimeric, M 670 , calc. 728 , whilst ${ }^{1} \mathrm{H}$ n.m.r. and i.r. spectra $\left(\mathrm{CDCl}_{3}\right)$, show that each Nb atom is bonded to the cyclopentadienyl ring, one terminal carbonyl group, and two bridging tolan molecules (a sharp singlet of $\mathrm{C}_{5} \mathrm{H}_{5}$-ring protons at $\tau 4 \cdot 17$ p.p.m.; one band at $\vee(\mathrm{C} \equiv \mathrm{O}) 1970 \mathrm{~cm} .^{-1}$; there is no band of a non-bridging co-ordinated triple bond in the region ${ }^{5} 1600-1900 \mathrm{~cm} .^{-1}$). According to the mass spectrum there is a $\mathrm{Nb}-\mathrm{Nb}$ bond (a peak of $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}\right]_{2}^{+}$with $m / e=316$, but no peak for $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}\right]^{+}$). The diamagnetism of (I) suggests a double character for the $\mathrm{Nb}-\mathrm{Nb}$ bond. On this
basis the following molecular structure was proposed, which is confirmed by the present X-ray

analysis. Compound (I) is the first organometallic complex studied with a $\mathrm{Nb}-\mathrm{Nb}$ bond and the first π-complex with two bridging acetylenic ligands between two metal atoms.

Crystal data: (I) is triclinic, $a=10 \cdot 43, b=9 \cdot 60$, $c=9 \cdot 12 \AA, \alpha=110 \cdot 3^{\circ}, \quad \beta=71 \cdot 1^{\circ}, \gamma=114 \cdot 1^{\circ}$, $D_{\mathrm{m}}=1.54, \quad D_{\mathrm{c}}=1.58 \mathrm{g.cm} .^{-3}$ for $Z=1, \quad M=$ 728, space group $P \overline{1}$. Intensities of $c a .1400$ independent reflections were estimated visually disregarding absorption correction (an equiinclination Weissenberg goniometer, unfiltered copper radiation). The structure was solved by the heavy-atom technique and refined by the fullmatrix least-squares method with isotropic temperature factors. At the present stage of refinement, $R=0 \cdot 13$, with standard deviations in bond lengths of $0.005-0.03 \AA$ and in bond angles of $0 \cdot 3-2 \cdot 0^{\circ}$ depending on the atomic numbers.
The dimeric molecule (Figure) is situated in the inversion centre. The tolan ligand geometry is
defined by the torsion angle $\mathrm{C}(3) \mathrm{C}(1) \mathrm{C}(2) / \mathrm{C}(1) \mathrm{C}(2)$ $\mathrm{C}(4)$ which is equal to 28° and by the angle of 49° between phenyl ring planes. The co-ordinated triple bond length ($1.39 \pm 0.02 \AA$) is greater than that for two known complexes, each with one bridging tolan group, $\mathrm{Ni}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ph}_{2} \mathrm{C}_{2}$ (II) ${ }^{6}$ and $\mathrm{Co}_{2}(\mathrm{CO})_{6} \mathrm{Ph}_{2} \mathrm{C}_{2}$ (III), ${ }^{7}$ where this bond length is 1.35 ± 0.03 and $1.369 \AA .{ }^{8}$ But the bond angles at acetylenic carbon atoms in (II) are 138 and 142° and in (III) 137 and 139°, i.e., distinctly larger than the $\mathrm{C}(3) \mathrm{C}(1) \mathrm{C}(2)$ and $\mathrm{C}(4) \mathrm{C}(2) \mathrm{C}(1)$ angles in (I). This difference cannot be accounted for by

Figure
steric hindrances but is probably caused by the lesser s-character of the co-ordinated triple bond in (I) than in (II) and (III). It is of interest that, because of a steric repulsion between the carbonyl group carbon atom and the $\mathrm{C}(2)$ atom (see the Figure), the acetylenic group is not symmetrical with respect to the $\mathrm{Nb}-\mathrm{Nb}$ bond, e.g. the angle between the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{Nb}-\mathrm{Nb}$ vectors is equal to 80° instead of 90°.

The average distance between the Nb -atom and the carbon atoms of the planar cyclopentadienyl ring is $2 \cdot 45 \AA$, but the deviations of the individual values from this average are quite significant. Probably this "inclination" of the $\mathrm{C}_{5} \mathrm{H}_{5}$-ring is be caused by the very short intermolecular contacts C $\cdots \mathrm{C}(3.27$ and $3.29 \AA$) in which just those $\mathrm{C}_{5} \mathrm{H}_{5}$-ring atoms having the minimum distances ($2 \cdot 40$ and $2 \cdot 43 \AA$) from the Nb -atom participate.

The $\mathrm{Nb}-\mathrm{Nb}$ bond distance ($2 \cdot 74 \AA$) is much shorter than the analogous distance ($3.31 \AA$) in $\alpha-\mathrm{NbI}_{4}{ }^{9}$ and somewhat less than the interatomic distance in Nb metal $(2 \cdot 86 \AA)$. If one takes the half of the $\mathrm{Nb}-\mathrm{Nb}$ distance ($1.66 \AA$) in $\alpha-\mathrm{NbI}_{4}$ as an Nb single bond covalent radius then the distance $\mathrm{Nb}-\mathrm{C}($ cyclopentadienyl) may be estimated as $1.66+0.77=2.43 \AA\left(0.77 \AA\right.$ is the $s p^{3}$-hybridized carbon atom radius) which is reasonably close to the average experimental value in (I). Insofar as the $\mathrm{Nb}-\mathrm{Nb}$ bond in (I) is much shorter than the doubled Nb radius and the complex is diamagnetic, this metal-to-metal bond probably has doublebond characteristics, which is consistent with the 18-electron rule.
Just as in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})_{4}{ }^{10}$ the Nb atom in (I) is 7 -co-ordinated; however, its co-ordination polyhedron is severely distorted because of the metal-to-metal bond formation.

Now we are completing the X-ray studies of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2}, \quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{3}$, and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~V}(\mathrm{CO})_{2}\left(\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}\right)$ and have found that the first compound is monomeric, with two tolan molecules co-ordinated independently.
(Received, August 2nd, 1968; Com. 1060.)

[^0]
[^0]: ${ }^{1}$ A. N. Nesmejanov, K. N. Anisimov, N. E. Kolobova, and A. A. Pasynskii, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1966, 774.
 2^{2} A. N. Nesmejanov, K. N. Anisimov, N. E. Kolobova, and A. A. Pasynskii, Doklady Akad. Nauk S.S.S.R., 1968, to be published.
 ${ }^{3}$ A. N. Nesmeyanov, K. N. Anisimov, N. E. Kolobova, and A. A. Pasynskii, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1968, to be published.
 ${ }^{4}$ G. G. Alexandrov, A. I. Gusev, and Yu. T. Struchkov. Zhur. strukt. Khim., 1968, 9, 333.
 ${ }^{5}$ F. L. Bowden and A. B. P. Lever, Organometallic Chem. Rev., 1968, 3, 227.
 ${ }^{6}$ O. S. Mills and B. H. Show, J. Organometallic Chem., 1968, 2, 595.
 7 W. G. Sly, J. Amer. Chem. Soc., 1959, 81, 18.
 7 D. A. Brown, J. Chem. Phys., 1960, 33, 1037.
 ${ }^{\circ}$ L. F. Dahl and D. L. Wampler, Acta Cryst., 1962, 15, 903.
 ${ }^{10}$ R. J. Doedens and L. F. Dahl, J. Amer. Chem. Soc., 1965, 87, 2576.

