A Synthesis of 2-Substituted Tetrafluoropyridines

By L. P. ANDERSON, W. J. FEAST,* and W. K. R. MUSGRAVE (The Chemistry Department, The University, South Road, Durham)

ALTHOUGH 4-substituted tetrafluoropyridines can easily be synthesised from pentafluoropyridine,¹ 2- and 3-substituted tetrafluoropyridines are not readily available. In the course of our research into the Diels-Alder reactions of polyfluorocyclohexa-1,3-dienes² we have found that the addition of alkynes to perfluorocyclohexa-1,3-diene (I) and pyrolysis of the 1,4,5,6,7,7,8,8-octafluorobicyclo-[2,2,3]octa-2,5-dienes so formed gave 1,2-disubstituted tetrafluorobenzenes in good yields.

R = Br, $(CF_2)_3CN$] and $[IV; R = CF_3, Br$, C_6F_5 , $(CF_2)_3CN$, $(CF_2)_3C_5F_4N$] are shown in Table 1. Yields quoted are after separation from product mixtures by g.l.c. The molecular formulae of the products were determined from the accurate masses of the highest peaks in the mass spectra. The structures of compounds (IV) were unambiguously assigned from their ¹⁹F n.m.r. spectra (Table 2). Only one of these compounds, (IV; $R = CF_3$), has been prepared previously³ and our data are in

<i>TABLE</i>	1
	_

Nitrile (II)	Mole ratio	Temp.	Time (hr)	Yield %		
	(1).(11)		()	(III)	(IV)	
$R = CF_3$	1:1	400°	16	_	40	
Br	1:3	400	15	-	40	
Br	2:3	380	12	9	18	
C.F.	1:1	390	64	-	4	
(ČF.),CN	1:2	350	16	4	1	
(CF ₂) ₃ CN	1:2	350	64	-	10†	

† Together with perfluoro-1,3-bis-2,2'-pyridylpropane, 10%.

TABLE 2

											Conc. m	
Compound	Chemical shifts				F –F Coupling constants					CCl₄	Reference	
Ŕ	F(3)	F(4)	F(5)	F(6)	$J_{3,4}$	$J_{3,5}$	J 3,6	J 4,6	J 4,6	J 5,6	(vol. %)	C_6F_6
CF ₃	-21.4	-28.0	-13.5	-82.0	17.7	10.1	28.1	17.0	19.8	$24 \cdot 1$	100	ext.
Br	-7.5	-29.3	$-33 \cdot 2$	-82.6	17.2	4.6	22.7	18.2	17.0	25.6	100	ext.
C ₆ F ₅	-8.2	-24.7	ca. -22.7	81·7	$17 \cdot 2$	4.7	$24 \cdot 9$	17.4	17.8	$25 \cdot 4$	30	int.
$(CF_2)_3CN$	$-23 \cdot 4$	-28.0	-14.0	$-83 \cdot 2$	17.8		26.4	17.8	18.8	$24 \cdot 3$	50	int.
$(CF_2)_3C_5F_4N$	-23.4	-26.8	-12.4	-82.3	18.2		$27 \cdot 4$	18.2	18.6	24.2	20	int.

We now report an analogous synthesis of 2-substituted tetrafluoropyridines (IV), using nitriles (II) as dienophiles.

The reaction was carried out by heating (I) and [II; $R = CF_3$, Br, C_6F_5 , $(CF_2)_3CN$] in Pyrex ampoules containing dipentene as a free-radical inhibitor. Reactions condition and yields of [III; agreement with those reported. Both adducts [III; R = Br, or $(CF_2)_3CN$] showed two absorptions in the double-bond region of the i.r. spectrum $[R = Br, 1765 \text{ and } 1615; R = (CF_2)_3 CN, 1775 \text{ and}$ 1660 cm.-1], their ¹⁹F n.m.r. spectra were consistent with the structures assigned, and pyrolysis under vacuum of (III; R = Br) gave (IV; R = Br) in 43% yield.

Acetonitrile and benzonitrile did not react under these conditions; presumably the success of this reaction is dependent on a strongly electronegative group attached to the nitrile.

(Received, August 26, 1968, Com. 1162.)

(a) R. D. Chambers, J. Hutchinson, and W. K. R. Musgrave, J. Chem. Soc., 1964, 3736; (b) R. D. Chambers, B. Iddon, W. K. R. Musgrave, and, in part, L. Chadwick, *Tetrahedron*, 1968, 24, 877, and references therein; (c) R. E. Banks, J. E. Burgess, W. M. Cheng, and R. N. Haszeldine, *J. Chem. Soc.*, 1965, 575.
² L. P. Anderson, W. J. Feast, and W. K. R. Musgrave, *J. Chem. Soc.*, submitted for publication.
³ (a) R. E. Banks, J. E. Burgess, and R. N. Haszeldine, *J. Chem. Soc.*, 1965, 2720; (b) J. Lee and K. G. Orrell, *ibid.*, *ibid.*

1965, 582.