# The Absolute Configuration of a Dissymmetric Pseudotetrahedral Co-ordination Compound containing a Restricted Biphenyl. The Molecular Structure of $\Delta-2,2^{\prime}$-bis(salicylideneaminato)-( +$)_{D_{D}}-$ ( $R$ )-6,6'-dimethylbiphenylcobalt(II) 

By Louis H. Pignolet, Ronald P. Taylor, and William DeW. Horrocks, jun.*<br>(Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

Mislow and his co-workers have determined the absolute configuration of $2,2^{\prime}$-diamino- $6,6^{\prime}$-dimethylbiphenyl (bmp) by partial asymmetric synthesis. ${ }^{1}$ This molecule is a member of a configurationally related series of restricted biphenyls, inherently dissymmetric chromophores, whose optical activity is of considerable interest. ${ }^{2}$ Until now there has been no $X$-ray determination of the absolute configuration of any member of the
restricted biphenyl series, although the absolute configuration of a binaphthyl derivative has been reported ${ }^{3}$ and related chemically ${ }^{4}$ to the biphenyl series, thus confirming the original determination. ${ }^{1}$

Lyons and Martin ${ }^{5}$ have prepared copper(iI) and beryllium(II) complexes of the tetradentate ligand formed by the Schiff base reaction of salicylaldehyde (sal) on bmp, $\mathrm{Cu}(\mathrm{sal})_{2} \mathrm{bmp}$ and $\mathrm{Be}(\mathrm{sal})_{2} \mathrm{bmp}$. The expected distorted tetrahedral arrangement of
ligand atoms was confirmed by a structure determination ${ }^{6}$ of the non-restricted biphenyl analogue, $\mathrm{Cu}(\mathrm{sal})_{2} \mathrm{bp}\left(\mathrm{bp}=2, \mathbf{2}^{\prime}\right.$-diaminobiphenyl).

Holm and his co-workers, ${ }^{7}$ as part of an extensive series of investigations of diastereoisomeric four-co-ordinate complexes, have made use of these and similar ligands to prevent the racemization of dissymmetric metal complexes of the type $\mathrm{M}(\mathrm{sal})_{2} \mathrm{bmp}, \quad\left[\mathrm{M}=\mathrm{CoII}, \mathrm{NiII}, \mathrm{ZnII}\right.$, or $\left.\mathrm{Pd}^{\mathrm{II}}\right]$. These complexes are analogous to the bischelate nickel(II) complexes, $\mathrm{Ni}(\mathrm{A}-\mathrm{B})_{2}$, which can exist in $\Delta$ or $\Lambda$ absolute configurations ${ }^{8}$ ( $\Delta$ refers to righthand and $\Lambda$ to left-hand chirality with respect to the C-2 axis) but which are found to racemize rapidly on the n.m.r. time scale. A comparison ${ }^{7}$ of the o.r.d. curves for nickel(II) Schiff-base complexes derived from the binaphthyl and biphenyl series gives further confirmation of Mislow's ${ }^{1}$ original determination of absolute configuration in the latter series. The present structure of $\mathrm{Co}(\mathrm{sal})_{2}-(+)_{\mathrm{D}}$-bmp represents the first direct determination of the absolute configuration of a pseudotetrahedral co-ordination compound.


Figure. $\quad \Delta-\mathrm{Co}\left(\mathrm{sal}_{\mathrm{I}_{2}}-(+)_{\mathrm{D}}-(R)-\mathrm{bmp}\right.$
The compound crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with $a=17.978(5), b=$ $11 \cdot 206(2), c=11 \cdot 628(3) \AA, U=2342 \cdot 6 \AA^{3}, M=$ $477 \cdot 4, D_{\mathrm{m}}=1.35(2)$ (flotation), and $D_{\mathrm{c}}=1.353$ for $Z=4$. Intensities of 1745 independent reflections ( 1616 non-zero) were recorded with a GE XRD-5 manual goniostat using zirconiumfiltered $\mathrm{Mo}-K_{\alpha}$ radiation and the stationary crystal-stationary counter method. The structure was solved by conventional Patterson and

Fourier methods and refined by full-matrix leastsquares to $R 0.098$ with the cobalt, nitrogen, and oxygen atoms allowed anisotropic temperature factors while the carbon atoms were isotropically refined. The hydrogen atoms were not located. The intensities of $18(h k l),(\overline{h k l})$ pairs were measured on a Picker automated diffractometer $\dagger$ using nickel-filtered $\mathrm{Cu}-K_{\alpha}$ radiation. The results were compared with ratios of structure factors calculated using $\Delta f^{\prime \prime}$ of 3.9 for the cobalt atom. ${ }^{9}$

The absolute configuration of the bmp moiety is $R$, confirming Mislow's determination. ${ }^{1}$ The $R$-configuration of the diamine uniquely establishes ${ }^{7}$ the $\Delta$ configuration for the complex as a whole and this is substantiated by the present work. The structure consists of discrete molecules of $\Delta$ -$\mathrm{Co}(\mathrm{sal})_{2}-(+)_{\mathrm{D}}-(R)$-bmp wherein the ligand atoms surround the cobalt atom in a highly distorted tetrahedral fashion (see Figure). The bond distances involving the cobalt atom are $\mathrm{Co}-\mathrm{N}(\mathrm{A})$, $2.025(10)$; $\mathrm{Co}-\mathrm{N}(\mathrm{B}), \mathrm{l} \cdot 992(10)$; $\mathrm{Co}-\mathrm{O}(\mathrm{A}), 1.899(10)$; and $\mathrm{Co}-\mathrm{O}(\mathrm{B}), 1 \cdot 901(9) \AA$; while the six angles at the cobalt atom are $\mathrm{N}(\mathrm{A})-\mathrm{Co}-\mathrm{O}(\mathrm{A}), 93 \cdot 2 ; \mathrm{N}(\mathrm{B})-\mathrm{Co}-$ $\mathrm{O}(\mathrm{B}), 95 \cdot 1 ; \mathrm{O}(\mathrm{A})-\mathrm{Co}-\mathrm{O}(\mathrm{B}), 114 \cdot 0 ; \mathrm{N}(\mathrm{A})-\mathrm{Co}-\mathrm{O}(\mathrm{B})$, $133 \cdot 5$; and $\mathrm{N}(\mathrm{B})$-Co-(A), $127 \cdot 0^{\circ}$. The corresponding angles in the copper compound ${ }^{6}$ are 96, 94, 94, 89,155 , and $151^{\circ}$ respectively. The first three angles, being largely determined by the bite requirements of the chelate rings, are in good agreement. The deviations in the latter three arise because the co-ordination in the cobalt compound is considerably closer to tetrahedral than in the copper complex. Thus the dihedral angle between the two salicylaldimine chelate rings is $67.6^{\circ}$ in the present case but only $41^{\circ}$ in the copper compound. Co(sal) ${ }_{2}$ bmp is, however, less tetrahedral than bis-( $N$-isopropylsalicylaldiminato) nickel(II) ${ }^{10}$ where the corresponding dihedral angle is $81 \cdot 5^{\circ}$. Two factors may contribute to the difference in co-ordination geometry between $\mathrm{Co}(\mathrm{sal})_{2} \mathrm{dmp}$ and $\mathrm{Cu}(\mathrm{sal})_{2} \mathrm{dp}$. The first is the wellknown tendency for cobalt(II) salicylaldimine complexes to attain tetrahedral co-ordination, even with $N$-aryl substituents. ${ }^{11}$ The second is the geometry imposed by the biphenyl restriction resulting from the methyl groups in the 6 and $6^{\prime}$ positions. This steric interaction (the two methyl carbon atoms are separated by only $3 \cdot 41 \AA$, less than the sum of methyl van der Waals radii) results in a dihedral angle of $70 \cdot 4^{\circ}$ between the planes of the biphenyl rings, a considerable increase over the $57^{\circ}$ angle found for the copper compound. ${ }^{6}$

We thank the Directorate of Chemical Sciences,
$\dagger$ We thank Professor S. J. Lippard of Columbia University for making this instrument available to us.

Air Force Office of Scientific Research, for financial support, Dr. M. J. O'Connor for supplying a sample of the compound, Dr. A. Zalkin for
providing the computer programs, and Mr. D. DeW. Hall for considerable assistance.
(Received, September 4th, 1968; Com. 1186.)
${ }^{1}$ F. A. McGinn, A. K. Lazarus, M. Siegel, J. E. Ricci, and K. Mislow, J. Amer. Chem. Soc., 1958, 80, 476; cf. K. Mislow, Angew. Chem., 1958, 70, 683 and references therein.
${ }^{2}$ For a review see K. Mislow, Ann. New York Acad. Sci., 1962, 93, 457.
${ }^{3}$ H. Akimoto, T. Shiori, Y. Iitaka, and S. Yamada, Tetrahedron Letters, 1968, 97.
${ }^{4}$ S. Yamada and H. Akimoto, Tetrahedron Letters, 1968, 3967.
${ }^{5}$ F. Lyons and K. V. Martin, J. Amer. Chem. Soc., 1957, 79, 1273.
${ }^{6}$ T. P. Cheeseman, D. Hall, and T. N. Waters, Proc. Chem. Soc., 1963, 379; J. Chem. Soc. (A), 1966, 1396.
${ }^{7}$ M. J. O'Connor, R. E. Ernst, and R. H. Holm, J. Amer. Chem. Soc., 1968, 90, 4561.
${ }^{8}$ R. E. Ernst, M. J. O'Connor, and R. H. Holm, J. Amer. Chem. Soc., 1967, 89, 6104.
9 "'International Tables for X-ray Crystallography", The Kynoch Press, Birmingham, 1962, vol. III, p. 214.
${ }^{10}$ M. R. Fox, E. C. Lingafelter, P. L. Orioli, and L. Sacconi, Acta Cryst., 1964, 17, 1159.
${ }^{11}$ R. H. Holm, G. W. Everett, jun., and A. Chakravorty, Progr. Inorg. Chem., 1966, 7, 83; H. Nishikawa and S. Yamada, Bull. Chem. Soc. Japan, 1965, 38, 1506 and references therein.

