The Absolute Configuration of a Dissymmetric Pseudotetrahedral Co-ordination Compound containing a Restricted Biphenyl. The Molecular Structure of Δ -2,2'-bis(salicylideneaminato)-(+)_D-(**R**)-6,6'-dimethylbiphenylcobalt(II)

By LOUIS H. PIGNOLET, RONALD P. TAYLOR, and WILLIAM DEW. HORROCKS, JUN.* (Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

MISLOW and his co-workers have determined the absolute configuration of 2,2'-diamino-6,6'-dimethylbiphenyl (bmp) by partial asymmetric synthesis.¹ This molecule is a member of a configurationally related series of restricted biphenyls, inherently dissymmetric chromophores, whose optical activity is of considerable interest.² Until now there has been no X-ray determination of the absolute configuration of any member of the restricted biphenyl series, although the absolute configuration of a binaphthyl derivative has been reported³ and related chemically⁴ to the biphenyl series, thus confirming the original determination.¹

Lyons and Martin⁵ have prepared copper(II) and beryllium(II) complexes of the tetradentate ligand formed by the Schiff base reaction of salicylaldehyde (sal) on bmp, Cu(sal)₂bmp and Be(sal)₂ bmp. The expected distorted tetrahedral arrangement of ligand atoms was confirmed by a structure determination⁶ of the non-restricted biphenyl analogue, $Cu(sal)_2bp$ (bp = 2,2'-diaminobiphenyl).

Holm and his co-workers,⁷ as part of an extensive series of investigations of diastereoisomeric fourco-ordinate complexes, have made use of these and similar ligands to prevent the racemization of dissymmetric metal complexes of the type $M(sal)_{2}bmp$, $[M = Co^{II}, Ni^{II}, Zn^{II}, or Pd^{II}]$. These complexes are analogous to the bischelate nickel(11) complexes, Ni(A-B)₂, which can exist in Δ or Λ absolute configurations⁸ (Δ refers to righthand and Λ to left-hand chirality with respect to the C-2 axis) but which are found to racemize rapidly on the n.m.r. time scale. A comparison⁷ of the o.r.d. curves for nickel(11) Schiff-base complexes derived from the binaphthyl and biphenyl series gives further confirmation of Mislow's¹ original determination of absolute configuration in the latter series. The present structure of $Co(sal)_2$ -(+)_p-bmp represents the first direct determination of the absolute configuration of a pseudotetrahedral co-ordination compound.

FIGURE. Δ -Co(sal)₂-(+)_D-(R)-bmp

The compound crystallizes in the orthorhombic space group $P2_12_12_1$ with a = 17.978(5), b = $11\cdot206(2)$, $c = 11\cdot628(3)$ Å, $U = 2342\cdot6$ Å³, M = $477\cdot4$, $D_{\rm m} = 1\cdot35(2)$ (flotation), and $D_{\rm c} = 1\cdot353$ for Z = 4. Intensities of 1745 independent reflections (1616 non-zero) were recorded with a GE XRD-5 manual goniostat using zirconiumfiltered Mo- K_{α} radiation and the stationary crystal-stationary counter method. The structure was solved by conventional Patterson and Fourier methods and refined by full-matrix leastsquares to R 0.098 with the cobalt, nitrogen, and oxygen atoms allowed anisotropic temperature factors while the carbon atoms were isotropically refined. The hydrogen atoms were not located. The intensities of 18 (*hkl*), (*hkl*) pairs were measured on a Picker automated diffractometer† using nickel-filtered Cu- K_{α} radiation. The results were compared with ratios of structure factors calculated using $\Delta f''$ of 3.9 for the cobalt atom.⁹

The absolute configuration of the bmp moiety is R, confirming Mislow's determination.¹ The R-configuration of the diamine uniquely establishes7 the Δ configuration for the complex as a whole and this is substantiated by the present work. The structure consists of discrete molecules of Δ - $Co(sal)_{2}(+)_{p}(R)$ -bmp wherein the ligand atoms surround the cobalt atom in a highly distorted tetrahedral fashion (see Figure). The bond distances involving the cobalt atom are Co-N(A), 2.025(10); Co-N(B), 1.992(10); Co-O(A), 1.899(10); and Co-O(B), 1.901(9) Å; while the six angles at the cobalt atom are N(A)-Co-O(A), 93.2; N(B)-Co-O(B), 95.1; O(A)-Co-O(B), 114.0; N(A)-Co-O(B), 133.5; and N(B)-Co-(A), 127.0°. The corresponding angles in the copper compound⁶ are 96, 94, 94, 89, 155, and 151° respectively. The first three angles, being largely determined by the bite requirements of the chelate rings, are in good agreement. The deviations in the latter three arise because the co-ordination in the cobalt compound is considerably closer to tetrahedral than in the copper complex. Thus the dihedral angle between the two salicylaldimine chelate rings is 67.6° in the present case but only 41° in the copper compound. Co(sal), bmp is, however, less tetrahedral than bis-(N-isopropylsalicylaldiminato)nickel(11)¹⁰ where the corresponding dihedral angle is 81.5° . Two factors may contribute to the difference in co-ordination geometry between Co(sal)₂dmp and Cu(sal)₂dp. The first is the wellknown tendency for cobalt(II) salicylaldimine complexes to attain tetrahedral co-ordination, even with N-aryl substituents.¹¹ The second is the geometry imposed by the biphenyl restriction resulting from the methyl groups in the 6 and 6' positions. This steric interaction (the two methyl carbon atoms are separated by only 3.41 Å, less than the sum of methyl van der Waals radii) results in a dihedral angle of 70.4° between the planes of the biphenyl rings, a considerable increase over the 57° angle found for the copper compound.6

We thank the Directorate of Chemical Sciences,

† We thank Professor S. J. Lippard of Columbia University for making this instrument available to us.

Air Force Office of Scientific Research, for financial support, Dr. M. J. O'Connor for supplying a sample of the compound, Dr. A. Zalkin for providing the computer programs, and Mr. D. DeW. Hall for considerable assistance.

(Received, September 4th, 1968; Com. 1186.)

¹ F. A. McGinn, A. K. Lazarus, M. Siegel, J. E. Ricci, and K. Mislow, J. Amer. Chem. Soc., 1958, 80, 476; cf. K. Mislow, Angew. Chem., 1958, 70, 683 and references therein. ² For a review see K. Mislow, Ann. New York Acad. Sci., 1962, 93, 457.

⁸ H. Akimoto, T. Shiori, Y. Iitaka, and S. Yamada, Tetrahedron Letters, 1968, 97.

⁴ S. Yamada and H. Akimoto, Tetrahedron Letters, 1968, 3967.

⁴ S. Yamada and H. Akimoto, Tetrahedron Letters, 1968, 3967.
⁵ F. Lyons and K. V. Martin, J. Amer. Chem. Soc., 1957, 79, 1273.
⁶ T. P. Cheeseman, D. Hall, and T. N. Waters, Proc. Chem. Soc., 1963, 379; J. Chem. Soc. (A), 1966, 1396.
⁷ M. J. O'Connor, R. E. Ernst, and R. H. Holm, J. Amer. Chem. Soc., 1968, 90, 4561.
⁸ R. E. Ernst, M. J. O'Connor, and R. H. Holm, J. Amer. Chem. Soc., 1967, 89, 6104.
⁹ "International Tables for X-ray Crystallography", The Kynoch Press, Birmingham, 1962, vol. III, p. 214.
¹⁰ M. R. Fox, E. C. Lingafelter, P. L. Orioli, and L. Sacconi, Acta Cryst., 1964, 17, 1159.
¹¹ R. H. Holm, G. W. Everett, jun., and A. Chakravorty, Progr. Inorg. Chem., 1966, 7, 83; H. Nishikawa and S. Yamada, Bull. Chem. Soc. Japan, 1965, 38, 1506 and references therein.