ClOH⁻ Radical: Electron Spin Resonance Evidence from Y-Irradiated **Barium Chloride Hydrate**

By R. C. CATTON and M. C. R. SYMONS*

(Department of Chemistry, The University, Leicester LE1 7RH)

KINETIC and spectroscopic studies of irradiated aqueous solutions have shown that hydroxyradicals are important intermediates¹ and that, in the presence of halide ions (Hal-), a reaction of the following type occurs^{2,3}

> $OH + Hal^- \rightleftharpoons OH^- + Hal$ (1)

$$\operatorname{Hal} + \operatorname{Hal}^{-} \to \operatorname{Hal}_{2}^{-}$$
 (2)

Anbar and Thomas³ and Raef,⁴ in order to explain certain kinetic features have tentatively postulated the formation of the species HalOHas an intermediate in reaction (1), but no spectroscopic evidence has so far been reported.

We have detected two radicals in γ -irradiated BaCl₂,2H₂O, the less thermally stable being a normal Cl₂⁻ ion and the other being a radical having e.s.r. properties in accord with the formulation ClOH⁻. The data for both radicals are given in the Table and the similarity of the g- and ³⁵Clhyperfine tensors can be seen. That the isotropic doublet is a result of hyperfine coupling to a proton was established by studying BaCl₂, 2D₂O.

E.s.r.	par	rameters	of	Cl_2^-	and	ClOH-	found	in	γ-
irradia	ted	BaCl ₂ ,2	H ₂ O	. (Tł	A - A	tensor is	in gau	ss.)	

	Cl ₂ -	CIOH-
£т	2.0380	2.0174
<i>g</i>	2.0027	2.0053
A (35Cl)	ca. 9	16.4
A_{\parallel} (³⁵ Cl)	100	58
$A_{\rm I}({\rm H})$		24.6
$A_{\parallel}(\mathbf{H})$		25.0

We conclude that ClOH⁻ is a σ -radical of the same type as the V_{κ} -centres and that the spin density is distributed to give about 0.4 on the chlorine atom. Hence the radical should have chemical properties similar to those of hydroxyradicals, which was one of the requirements stipulated by Anbar and Thomas.³

(Received, September 25th, 1968; Com. 1309.)

¹ (a) J. H. Baxendale in "Pulse Radiolysis", ed. M. Ebert, J. P. Keene, A. J. Swallow, and J. H. Baxendale, Academic Press, New York, 1965, p. 15; (b) A. O. Allen, "The Radiation Chemistry of Water and Aqueous Solutions", D. Van Nostrand, New York, 1961.

⁴ B. Cerck, M. Ebert, C. W. Gilbert, and A. J. Swallow in ref. 1a, p. 83; J. K. Thomas, *Trans. Faraday Soc.*, 1965, 61, 702; H. C. Sutton, G. E. Adams, J. W. Boag, and B. D. Michael, in ref. 1a, p. 61.
³ M. Anbar and J. K. Thomas, *J. Phys. Chem.*, 1964, 68, 3829.
⁴ Y. Raef, in ref. 1a, p. 145.