n- and π -Participation and Secondary Deuterium Isotope Effects

By R. Eliason, † M. Tomič, S. Borčić, and D. E. Sunko*

("Rudjer Bošković" Institute, Zagreb and Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Yugoslavia)

SOME years ago, Streitweiser¹ pointed out that the magnitude of secondary α -deuterium isotope effects could be used as a measure for changes in the geometry of the transition state. The discussion of this type of "steric hindrance effect" has been centred around the phenonium-ion problem with the underlying reasoning that 'participation of a neighbouring group should also count as an entering group which should lower an a-deuterium isotope effect". Experimental evidence confirming this view is very scarce, and in 1965 we expressed doubts about the validity of this approach.² Systems showing undoubtedly enhanced solvolytic reactivities ascribed to neighbouring-group participation gave rise to α -effects of normal magnitude (e.g. [1-2H2]cyclopropylmethyl methanesulphonate, 3a [1-2H2]cyclopropylmethyl chloride^{3b}) while some other systems indicated a lowering of the α -effect to about 50% of its "normal" value.⁴ All of the compounds investigated involved σ - and π -participating systems, which were, and to a certain extent still are, a subject of controversy. Unfortunately no data could be found for n-participating systems, where bond formation with the internal nucleophile in the transition state has never been challenged.

† "Rudjer Bošković" Institute Postdoctoral Fellow, 1968.

We report measurements on secondary α -deuterium isotope effects in unambiguous cases of n- and π -participation.

Compounds (I) and (II) were chosen as the most convenient models, and the results of kinetic measurements are presented in the Table.

$$MeCH \cdot [CH_2]_3 \cdot O \cdot SO_2 \cdot C_6H_4Br - p \quad (I)$$

$$OMe$$

$$O \cdot SO_2 \cdot C_6H_4 \cdot Me - p$$

$$(II)$$

The MeO-5 participation in solvolysis has been thoroughly investigated by Allred and Winstein.⁵ For 4-methoxy-1-pentyl p-bromobenzenesulphonate they found that the ratio $k_{\Delta}/k_{\rm s}$ which measures the competition between assisted and unassisted solvolysis is $1\cdot22 \times 10^{-4}$ for acetolysis and 106 for ethanolysis. Thus, in the latter case, only about 1% of (I) reacts by the unassisted route. The complete absence of an α -effect in the ethanolysis of (I) can be attributed to steric

				-		
$k_{\rm H}/k_{ m D}$ b	$10^{4}k(sec.^{-1})^{a}$	T°	Solvent		ınd	Compoi
1.01 ± 0.02	$3\cdot 36\pm 0\cdot 05$	40	96% EtOH	••	••	(I)
	$\textbf{3.32} \pm \textbf{0.03}$	40	96% EtOH	••	••	$[1-^{2}H_{2}]$ (I)
	$8{\cdot}67\pm0{\cdot}05$	30	AcOH	••	••	(II)
1.13 ± 0.02	7.65 0.10	20				F# 9113/TT)
	7.05 ± 0.10	30	ACOH	••	••	[/-•ri](11) ••

Secondary deuterium isotope effects for n- and π -participation

a Uncertainties are standard deviations of the mean.

^b Uncertainties are probable errors.

hindrance due to bond formation between the methoxy-oxygen atom and C-1. The geometry of the transition state in this case resembles the trigonal bipyramid encountered in direct displacement reactions, without a net change in the force field at the reacting centre.

In the case of n-participation, the electron pair required for the new bond formation is freely available, and no synchronous breakage of a σ - or π -bond has to take place. This is probably also one of the factors influencing the ease of approach of the neighbouring group and a consequently sterically crowded transition state.

The 7-anti-norbornyl toluene-p-sulphonate showed only a slightly reduced α -effect indicating the virtual absence of any steric hindrance at

C-7 due to the participation of the double bond. In this rigid system the interaction apparently occurs at a greater distance so that changes in the bonding frequencies are not affected by the participating π -system. This is in full accord with the opinion⁶ that in anchimerically assisted reactions ionization and charge delocalization do not necessarily occur simultaneously with the new bond formation. It appears that α -effects are less sensitive to changes in the geometry of the transition state than the β -effects. Extensions of this work to other systems are imperative before definite conclusions can be drawn regarding the usefulness of α -secondary isotope effects in the investigation of π and σ participation.

(Received, July 22nd, 1968; Com. 992.)

¹ A Streitweiser, jun., "Solvolytic Displacement Reactions", McGraw Hill, New York, 1962, pp. 173-175.

² K. Humski, S. Borčić, and D. E. Sunko, Croat. Chem. Acta, 1965, 37, 3.

^a (a) S. Borčić, M. Nikoletić and D. E. Sunko, J. Amer. Chem. Soc., 1962, 84, 1615; (b) R. E. Robertson and C. T. Wu, Chem. and Ind., 1966, 195.

⁴C. C. Lee and E. W. C. Wong, J. Amer. Chem. Soc., 86, 1964, 2752; C. C. Lee and L. Noszko, Canad. J. Chem., 1966, 44, 2491.

⁵ E. L. Allred and S. Winstein, J. Amer. Chem. Soc., 89, 1967, 3991, and subsequent papers.

⁶ S. Winstein, J. Amer. Chem. Soc., 1965, 87, 381.