Paniculides A, B, and C, Bisabolenoid Lactones from Tissue Cultures of *Andrographis paniculata*[‡]

By A. J. Allison, D. N. Butcher, † J. D. Connolly, and K. H. Overton*

(Departments of Chemistry* and Botany†, The University of Glasgow, Glasgow, W.2)

CALLUS cultures derived from hypocotyl and stem tissues of Andrographis paniculata Nees (Acanthaceae), grown in liquid-shake culture, have produced three new sesquiterpene lactones based on bisabolene: paniculide A (3-5 mg./l.) (I), C₁₅H₂₀O₄, m.p. 120-121°, v_{max} (CCl₄) 1766, 1686 ($\Delta^{\alpha\beta}$ -butenolide), 3618, and 3578 (OH) cm.⁻¹, λ_{\max} (EtOH) 216 nm. (ϵ 15,500); paniculide B (20-25 mg./l.) (II), $C_{15}H_{20}O_5$, m.p. 145-146°, $[\alpha]_{\rm D}$ + 4° (MeOH), $\nu_{\rm max}$ (CHCl₃) 1755, 1680 ($\Delta^{\alpha\beta}$ -butenolide) and 3600 (OH) cm.⁻¹, $\lambda_{\rm max}$ (EtOH) 217 nm. (e 17,000); paniculide C (8-12 mg./l.) (III), $C_{15}H_{18}O_5$, $[\alpha]_D + 37^{\circ}$ (MeOH), oil, $\nu_{\rm max}$ (CCl₄) 1780 ($\Delta^{\alpha\beta}$ -butenolide), 1709 ($\alpha\beta$ oxido- $\Delta^{\alpha'\beta'}$ -cyclohexenone), 3633, and 3600 (OH) cm.⁻¹, λ_{max} (EtOH) 250 nm.(ϵ 4500). Andrographolide,¹ a major constituent of whole plants, or related substances, could not be detected.

The constitution of paniculide B diacetate (IV), $C_{19}H_{24}O_7$, m.p. 98—99°, is uniquely consistent with the following evidence: i.r. (CCl₄) 1773 ($\Delta^{\alpha\beta}$ butenolide), 1756 (acetates) cm.⁻¹; n.m.r. (CDCl₃, 100 and 220 MHz); the following assignments are in each case supported by double resonance: (a) τ 8·32 and 8·42 (3H each, diffuse s), 4·99 (1H, diffuse t) and 7·74 (2H, m) [H's attached to C-1, C-13, C-3, and C-4]; (b) 3.87 (1H, d), 6.55 (1H, d) [C-8, C-9]; (c) 5.30 (1H, t), 7.33 (1H, sharp q), 8.18 (1H, sharp q) [C-12, C-11]; (d) 5.90 (2H, sharp q) [C-15]; (e) 7.66 (2H, m) [C-5]; and (f) 7.84 and 7.97 (each 3H, s, acetate Me).

Selective oxidation of paniculide B (II) at the allylic secondary alcohol furnished paniculide C (III), whose n.m.r. spectrum shows H-9 at τ 6.64 (sharp s) and disappearance of the H-8 signal. Paniculide A acetate (V), $C_{17}H_{22}O_5$, m.p. 95—96°, ν_{max} (CCl₄) 1768 and 1751 cm.⁻¹ differs in its n.m.r. spectrum from B diacetate (IV) principally in replacement of its 2H quartet at τ 5.90 (-CH₂OAc) by a 3H singlet at τ 8.54 (-CH₃).

The high resolution (MS 9) mass spectra of the paniculides support the proposed structures, showing the following major ions: A: $264\cdot13652$ [*P*]; 196 [*P* - C₅H₈]; 178 [*P* - (C₅H₈ + H₂O)]. B: $280\cdot13044$ [*P*]; 262 [*P* - H₂O]; 249 [*P* - CH₂-OH]; 244 [*P* - 2H₂O]; 231 [*P* - (CH₂OH + H₂O)]; 212 [*P* - C₅H₈]; 181 [*P* - (C₅H₈ + CH₂OH)]; 163 [*P* - (C₅H₈ + CH₂OH + H₂O)]. C: $278\cdot11490$ [*P*]; 260 [*P* - H₂O]; 245 [*P* - (H₂O + CH₃)].

The c.d. of paniculide C (III) [dioxan; 350 nm. $(\Delta \epsilon + 1.68)$] indicates² a β -epoxide. Arguments to be detailed elsewhere then favour the configurations indicated at C-8 and C-12 in paniculides A and B.

The paniculides are structurally related to bisabolangelone.³ Preliminary tracer experiments show that the cultures efficiently incorporate DL-[2-¹⁴C]mevalonolactone ($1\cdot3-1\cdot4\%$ based on DL) into paniculide B.

The production by tissue cultures of major secondary metabolites not found in the parent plant is of phytochemical interest.

(Received, September 6th, 1968; Com. 1214.)

 \ddagger Presented at the 5th International IUPAC Symposium on the Chemistry of the Natural Products in London, July 1968.

¹ M. P. Cava, W. R. Chan, R. P. Stein, and C. R. Willis, Tetrahedron, 1965, 21, 2617.

² (a) C. Djerassi, W. Klyne, T. Norin, G. Ohloff, and E. Klein, *Tetrahedron*, 1965, 21, 163; (b) personal communication from Dr. G. Snatzke.

³ L. Novotny, Z. Samek, and F. Sorm, Tetrahedron Letters, 1966, 3541.