Reaction of Benzyne with Butadiene

By L. F. Hatch* and D. Peter
(Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712)

Benzyne has been shown to act as a dienophile with cyclic dienes, but apparently not with acyclic dienes. The reason has been given that benzyne does not survive long enough to permit the open-chain diene to assume the requisite cislike arrangement that the cyclic dienes possess. ${ }^{1}$ We have now been able to effect this type of reaction.
Benzyne and buta-1,3-diene, generated by the concurrent thermal decomposition of benzene-diazonium-2-carboxylate ${ }^{2}$ and 3 -sulpholene (2,5 dihydrothiophen 1,1-dioxide) respectively, react in pentan-2-one at 100° to give a 9% yield of

1,4-dihydronaphthalene. A temperature of 100° is necessary to provide a reasonable, continuous concentration of butadiene from the 3 -sulpholene; the method of Friedman and Logullo ${ }^{3}$ was therefore useful for the preparation and decomposition in situ of benzenediazonium-2-carboxylate.

It is suggested that the nascent butadiene from the decomposition of 3 -sulpholene would be in the preferred cis-conformation, thus enabling reaction to take place.

That 3 -sulpholene acts simply as a source of butadiene, and that the SO_{2} entity is not involved in a transition state is shown by kinetic data ${ }^{4}$ obtained from the thermal decomposition of 3 -sulpholene in the presence and absence of maleic anhydride as the dienophile. The reactions are first order with $k=2.4 \times 10^{-3}\left(\min .^{-1}\right)$. At temperatures below the decomposition temperature of 3 -sulpholene, no addition product is formed with benzyne.

This research was supported by funds from The Robert A. Welch Foundation.
(Received, September 5th, 1968; Com. 1195.)
${ }^{1}$ J. F. Bunnett, J. Chem. Educ., 1961, 38, 278.
${ }^{2}$ M. Stiles and R. G. Miller, J. Amer. Chem. Soc., 1960, 82, 3802.
${ }^{3}$ L. Friedman and F. M. Logullo, J. Amer. Chem. Soc., 1963, 84, 1549.
${ }^{4}$ L. F. Hatch and D. Peter, unpublished results.

