Synthesis of 8-Fluoroadenosine

By MORIO IKEHARA* and SHOJI YAMADA

(Faculty of Pharmaceutical Sciences, Osaka University, Osaka, Japan)

MANY 8-substituted purine nucleosides have been synthesized,^{1,2} some of which revealed static activity against cancer cells.³ Position 8 of the purine nucleoside can be assumed to be analogous to position 5 of the pyrimidine nucleoside, since neither position is involved in the Watson-Crick base-pairing site.⁴ Since 5-fluorouridine and 5fluoro-2'-deoxyuridine are known to be active against cancer cells⁵ and viral systems,⁶ we attempted to synthesize 8-fluoroadenosine.

Application of the Sheeman reaction to purine nucleosides has been reported and the 2-fluoroinosine derivative⁷ and 2-fluoroadenosine⁸ have been successively synthesized. We have, therefore, applied the selective Sheeman reaction to 8-aminoadenosine² to obtain 8-fluoroadenosine, but the only product isolated was 8-fluorohypoxanthine because of the extreme lability of the nucleosidic linkage in the product.

To avoid cleavage of the nucleosidic linkage, 2',3',5'-tri-O-acetyl-8-azidoadenosine (78%) was synthesized from 8-azidoadenosine² with acetic anhydride. The triacetate, thus obtained, was hydrogenated with palladium-charcoal as catalyst to give 2',3',5'-tri-O-acetyl-8-aminoadenosine [glass (69%), t.l.c. (chloroform-ethanol, 35:5) $R_{\rm F}$ $0.40, \lambda_{\max}^{pH1}$ 270, λ_{\max}^{pH7} 272, λ_{\max}^{pH12} 273 mµ]. Triacetyl-8-aminoadenosine (4·12 g., 10 mmole) was dissolved in fluoroboric acid (42%, 60 ml.) at -20°

and sodium nitrite (1.38 g., 20 mmole) dissolved in 10 ml. of water was added slowly at -20° with stirring. After 30 min., ethanol (30 ml.; precooled to -20°) was added and the mixture was neutralized with concentrated ammonia to pH 7.0. The salt was filtered off and the product was extracted with chloroform (3 \times 100 ml.). The chloroform was evaporated off and the residue was chromatographed on a column of silica gel. Elution with chloroform gave a fraction having $R_{\rm F}$ 0.28 t.l.c. chloroform-ethanol, 37:3). Evaporation of the solvent and crystallization of the residue from benzene gave pale yellow needles [m.p. 170—171°, λ_{max}^{pH1} 263.5 (ϵ 17,200), $\lambda_{\max}^{\text{pH7}}$ 263 (14,600), $\lambda_{\max}^{\text{pH13}}$ 263 m μ (15,300), n.m.r. δ 1.94 (s, 3H, 5'-acetyl), 2.10 (d, 6H, 2' and 3'-acetyl), 4.28 (m, 2H, 4' and 5'-H), 5.77 (m, 1H, 3'-H), 6.09 (m, 2H, 1' and 2'-H), 7.48 $(s, 2H, 6-NH_2)$ and $8\cdot 18$ (s, 1H, 2-H)]. In some cases, small amounts of the 6,8-difluoro-derivative was obtained as by a product.

Triacetyl-8-fluoroadenosine was finally deacetylated by the treatment with methanolic ammonia at room temperature for 10 hr. The aqueous solution obtained after the evaporation of the ammonia, was passed through a cellulose column and the effluents lyophilized to give a glass (82%). Recrystallisation from ethanol gave a crystalline product, m.p. 190–191°, $[\lambda_{\max}^{pH1} 261.5, \lambda_{\max}^{pH7} 263, \lambda_{\max}^{pH13}]$ 264 m μ , paper chromatography : $R_{\rm F}$ 0.77 (isoproplyl alcohol-ammonia-water, 7:1:2), $R_F 0.51$ (nbutanol-water, 86:14), $R_{\rm F}$ 0.50 (water adjusted to pH 10 with ammonia), t.l.c. $R_F 0.75$ (chloroformethanol, 1:1)]. From the u.v. absorption properties, paper chromatography and t.l.c. data, we concluded that the product was 8-fluoroadenosine.

(Received, September 6th, 1968; Com. 1207.)

* Performed in [²H₆]dimethyl sulphoxide at 60 Mc. % sec. with tetramethylsilane as internal standard.

¹ M. Ikehara and K. Muneyama, Chem. and Pharm. Bull. (Japan), 1966, 14, 46; M. Ikehara, H. Tada, and K. Muneyama, Chem. and Pharm. Bull. (Japan), 1965, 13, 1140; M. Ikehara, S. Uesugi, and M. Kaneko, Chem. Comm., 1967, 17; R. E. Holmes and R. K. Robins, J. Amer. Chem. Soc., 1964, 86, 1242; R. A. Long and R. K. Robins, J. Org. Chem., 1967, 32, 2751.

² R. E. Holmes and R. K. Robins, J. Amer. Chem. Soc., 1965, 87, 2772.

³ K. Kuretani and F. Fukuoka, Report from the research group for Cancerostatic nucleosides, 1967; A. Bloch, E. Mihic, C. A. Nichol, R. K. Robins, and R. H. Whistler, Proc. Amer. Assoc. Cancer. Res., 1966, 7, 7.

- ⁴ J. D. Watson and F. H. C. Crick, *Nature*, 1953, 171, 737. ⁵ L. Bosch, E. Harbers, and C. Heidelberger, *Cancer Res.*, 1958, 18, 335.
- ⁶ N. P. Salzman, Virology, 1960, 10, 150.

⁷ J. F. Gerster and R. K. Robins, J. Amer. Chem. Soc., 1965, 87, 3752.

⁸ J. A. Montgomery and K. Hewson, J. Amer. Chem. Soc., 1957, 79, 2559; J. A. Montgomery and K. Hewson, J. Org. Chem., 1968, 33, 432.