Effects of Scavengers on the Radiolytic Formation of Buta-1,3-diene from *trans*-But-2-ene in Dilute Gaseous Mixtures

By R. W. HUMMEL

(Wantage Research Laboratory, Atomic Energy Research Establishment, Wantage, Berkshire)

IN radiation chemistry, trans-but-2-ene has been used¹ to detect methylene radicals formed from CH_4 and studies have been carried out of hydrogen formation² and of overall product formation³ from the γ -irradiated unsaturate. In the latter work,³ buta-1,3-diene was not listed as a product from either the liquid or the gaseous butene.

We have now found that buta-1,3-diene is produced in irradiated pure gaseous but-2-ene (G = 0.13) and in its mixtures with Ar or CH₄. In addition, its yield is markedly increased by small additions of N₂O and reduced to zero by small additions of SF₆, both these additives being generally used in radiation chemical studies as electron scavengers.

Mixtures of about 10 mole % trans-but-2-ene in Ar or CH₄ in 1.9-1. silica vessels were irradiated with ⁶⁰Co γ -rays at dose rates of 2.0 and 1.5 \times 10¹⁹ ev l.⁻¹ hr.⁻¹ respectively. The total gas pressure was about 107 kN m.⁻² and the irradiation temperature was about 30°. In scavenging experiments 1.1 kN m.⁻² SF₆ or 4 kN m.⁻² N₂O were added. Analyses were performed by g.l.c. with an 8-m. dimethylsulpholan column at 0° and then on a 1.3-m. AgNO₃ column at 20°.

On the assumption that G = 10 for but-2-ene disappearance, about 0.5% would be destroyed at the maximum doses given. This calculation excludes geometrical isomerisation, which is extremely rapid⁴ in the presence of SF₆. The destruction of butadiene during the irradiation would also be minimal owing to its low concentration, the presence of a large excess of but-2-ene acting as a protector, and the relatively low G-value for butadiene destruction (which was found to be about 18 in mixtures of 0.1% C₄H₆ in Ar, independent of the presence or absence of N₂O or SF₆).

G-Values for butadiene formation from trans-but-2-ene

Scavenger	Mixture	
	$CH_4 - C_4H_8$	$Ar-C_4H_8$
None	0.20	0.42
N_2O	3.5	0.44
SF_6	0.00	0.00

The results are shown in the Figure, from which the initial G-values given in the Table were calculated. It appears that N_2O has no effect on the initial butadiene yield in Ar, but has a pronounced accelerating effect in CH_4 , whereas SF_6 , which is a more effective scavenger, completely suppresses the formation of butadiene.

The addition of about $1.3 \text{ kN m}.^{-2}$ of NH₃, NMe₃, NO, and O₂ had little effect on the budadiene yield compared with the effects of N₂O and SF₆, so that radical reactions and positive ion-molecule reactions appear to be unimportant in this instance.

FIGURE. Yield of buta-1,3-diene as a function of irradiation time. A: $CH_4-C_4H_8-N_2O$; B: Ar- $C_4H_8-N_2O$; C: Ar- C_4H_8 ; D: $CH_4-C_4H_8$.

The results will be discussed on the basis of the assumption that an important mode of butadiene formation is the neutralisation of the but-2-ene parent ion by a thermal electron:

$$C_4H_8^+ + e^- \longrightarrow C_4H_6 + 2H \tag{1}$$

In the presence of SF_6 reaction (1) is suppressed and the but-2-ene ions are neutralised by other negative species (such as SF_6^-) in reactions permitting extensive energy partition.

Since N_2O is also an efficient electron scavenger it can also be assumed to prevent electron neutralisation of the butene parent ion. However, the N_2O^- formed is known to dissociate to give O⁻, and Warman⁵ has suggested the sequence

$$O^- + C_4 H_8 \longrightarrow C_4 H_7^- + OH$$
 (2)

$$C_4H_7^- + N_2O \longrightarrow C_4H_6 + N_2 + OH^- \quad (3)$$

as a possible explanation of enhanced N₂ yields in certain irradiated alkene-N₂O systems. Thus butadiene may be formed despite the removal of electrons by N₂O. In the Ar-N₂O system, O⁻ will react with N_2O as well as with C_4H_8 ,

$$N_2O + O^- \longrightarrow N_2 + O_2^-$$
 (4)

$$N_2O + O^- \longrightarrow NO + NO^-$$
 (5)

with $k_4/k_2 = 5$ and $k_5/k_2 = 3.7$ (cf. Table II, ref. 5). In the present experiments $[N_2O] [C_4H_8]$ = 0.38, so that $(R_4 + R_5)/R_2 = 3.3$ and only $\frac{1}{4}$ of the O⁻ can react to form $C_4H_7^-$. If the ion-pair yield in Ar is taken as 4, and if all electrons are scavenged by N_2O , the maximum value of $G(O^-)$ is 4 and hence $G(C_4H_7)_{max} = 1$. Since $G(C_4H_6)$ = 0.44 in the presence of N₂O, reaction (3) appears to be nearly 50% efficient. This is remarkably high. Furthermore, in the CH₄-N₂O system $G(C_4H_6) = 4 G(C_4H_7)$ and some other source of butadiene involving the participation of CH₄ in the reaction scheme is indicated. It can be shown that the reaction

$$O^- + CH_4 \longrightarrow OH^- + CH_3 \tag{6}$$

is almost certainly exothermic whereas (2) is probably slightly endothermic or thermoneutral.

- ¹ R. W. Hummel, Discuss. Faraday Soc., 1963, No. 36, 246.
- ² Y. Hatano and S. Shida, J. Chem. Phys., 1967, 46, 4784.

- P. C. Kaufman, J. Phys. Chem., 1963, 67, 1671.
 R. W. Hummel, Nature, 1968, 218, 1050.
 J. M. Warman, J. Phys. Chem., 1967, 71, 4066.
 F. H. Field and J. L. Franklin, "Electron Impact Phenomena," Academic Press, New York, 1957, p. 312.
- ⁷ F. M. Page, Advances in Chemistry Series, No. 36, 1962, American Chemical Society. p. 68.
- ⁸ G. R. Freeman, Radiation Res. Rev., 1968, 1, 1.

Consequently the conversion of O⁻ into OH⁻ via reaction (6), followed by the exothermic reaction

$$OH^{-} + C_4 H_8 \longrightarrow C_4 H_7^{-} + H_2 O$$
(7)

sets up a chain sequence between (7) and (3) more readily when CH_4 is present than when it is absent. The probable competition set up owing to occurrence of the analogous reaction between OH- and CH₄,

$$OH^- + CH_4 \longrightarrow CH_3^- + H_2O$$
 (8)

may be compensated by generation of $C_4H_7^-$ via the proton transfer reaction

$$CH_{3}^{-} + C_{4}H_{8} \longrightarrow C_{4}H_{7}^{-} + CH_{4}$$
(9)

For (9) to be exothermic, the heat of formation of C_4H_7 must be less than 14 kcal./mole if $\Delta H_{\rm f}(\rm CH_3^{-}) = 7 \ \rm kcal./mole.^6$ These values fit well into thermocycles based on the reactions (2), (6), (7), and (8) if the electron affinities of CH_3 and C_4H_7 are taken as 26 (cf. ref. 7) and 13 kcal./mole, respectively. The latter agrees well with the trend of values for other hydrocarbon molecules and radicals as compiled and tabulated recently by Freeman⁸ [who also cites evidence for a reaction between OH⁻ and methylcyclohexane analogous to (7)].

It appears that a plausible reaction scheme involving negative hydrocarbon ions can account for these effects produced by N₂O and SF₆ in this system.

I thank D. Rush for experimental assistance.

(Received, October 10th, 1968; Com. 1389.)