Hydrostannation of Some Iridium(I) Complexes

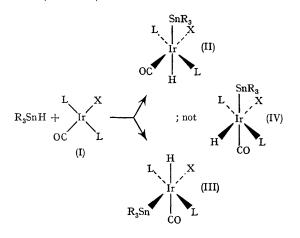
By M. F. LAPPERT* and N. F. TRAVERS (The Chemical Laboratory, University of Sussex, Brighton, BN1 9QJ)

HYDROMETALLATION of unsaturated molecules provides an important method for the preparation of organometallic compounds (e.g. from olefins or isocyanates of compounds having M-C or M-N bonds). By analogy, hydrometallation of coordinatively-unsaturated inorganic complexes should afford a general method for the synthesis of compounds which have metal-metal bonds. Hitherto, this has been investigated for hydrosilation;¹⁻³ but the sole adducts stable in solution were those formed from chloro- or ethoxy-silanes and RhCl(PPh₃)₃.^{2,3} There is evidence of HGeX₃ addition to Pt^{II}, but six-co-ordinate L₄Pt(GeX₃)H complexes have not been isolated.4

We now report the hydrostannation of some d^8

Ir^I complexes (I) (L = PPh₃, PPh₂Me, or PPhEt₂; X = Cl, Br, or I; and R = Ph, Me, or Et) to give the stable d^6 species (II) or, in two cases, (III) [the yellow complexes, with L = PPh₃, X = Cl or Br, and R = Me, obtained by use of benzene as the reaction medium; the white isomers (II) were obtained when Me₃SnH also served as solvent].

It is interesting that (i) hydrostannation of *trans*-IrClCO(PPh₃)₂ by Ph₃SnH was not effected in tetrahydrofuran, but was readily accomplished at *ca.* 20° in benzene, diethyl ether, or R₃SnH as solvent; and (ii) the reactions proceed equally readily with protic (Ar₃SnH) or hydridic (Alk₃SnH) stannanes. Instability in air, and solubility in organic solvents of (II) and (III) increased in


R, H or D, X, and L in R ₃ Sn(H or D)IrXCOL	2	ν(IrH) or ν(IrD) (cm. ⁻¹)	v(CO) (cm. ⁻¹)	v(IrCl) (cm. ⁻¹)
Me, H, Cl, PPh ₃ ^{a,e}		2080°	1963°	290
Me, D, Cl, PPh ₃ ^a	••	1508°	1993°	290
Me, H, Br, PPh _a ^{a,f}	••	2080	1963	
Me, H, Cl, PPh ₃ b		2093°	1998°	299
Me, D, Cl, PPh ₃ ^b	••	1503°	1998°	297
Me, H, Cl, PPh ₂ Me ^b	••	2065	1980	297
Ph, H, Cl, PPh ₃ b,d	••	2138	1998	300
Ph. D, Cl, PPh ₃ b,d	••	1530	1998	300
Ph, H, Br, PPh ₃ b,d	••	2138	1998	
Ph, D, Br, PPh ₃ b,d	••	1530	1998	
Ph, H, I, PPh ₃ b,d	••	2140	1997	
Ph, H, Cl, PPh ₂ Me ^b , d	••	2073°	2005°	305
Ph, D, Cl, PPh ₂ Me ^b , d	••	1483°	2005°	307

Spectral data for R₃Sn(H or D)IrXCOL₂

^a Assigned structure (III); ^b Assigned structure (II); ^c KBr disc; all other i.r. data are on Nujol mulls; ^d v_{sym}. (SnPh₃), 247-248 cm.⁻¹; ^e¹H n.m.r. signals (rel. intensity) (assignment) in CDCl₃: τ 10.01(9) Me₃Sn), τ 2.61(33) (Ph₃P), 7 20 (IrH); ¹¹H n.m.r. signals (rel. intensity) (assignment) in CDCl₃: 7 10.03(9) (Me₃Sn), 7 2.6(34) (Ph₃P).

the series: $L/R = PPh_a/Ph < PPh_aMe/Ph$ $< PPh_{a}/Me < PPh_{a}/Et < PPh_{a}/Me/Me.$

Thirteen of the complexes (II) and (III) (cf. ref. 5 for other compounds with R₃Sn-Ir bonds) have been characterised by (i) elemental analyses, (ii) molecular weights (isopiestic in benzene for five of the soluble compounds), and (iii) spectral data (see Table).

In order to assign configurations, the simplifying assumption was made that the phosphine ligands are trans [i.e., the possible structures are now (II)—(IV)];⁶ this was proved for Ph₃SnIrHClCO-(PPh₂Me)₂ by the observation (in the n.m.r. spectrum) of virtual coupling' between the PPh₂Me ligands (P-Me triplet; τ 8.2; apparent coupling constant = 9 c, /sec.). The configuration of the complexes (II) is now assigned on the following basis. (a) The Ir-H stretching frequency in related (Cl, Br, or I) complexes is independent of X; this makes (IV) unlikely.⁸ (b) The position of ν (Ir–Cl) for (III) [CO < R₃Sn \simeq Me < H in trans influence in Pt^{II} complexes]⁹ or (IV) would be expected¹⁰ at 260-290 cm.⁻¹. (c) There is no significant v(IrH)-v(CO) vibrational interaction (as shown by comparing hydrides and deuterides) as would have been expected¹¹ from (III).

Similar arguments, and especially the evidence of strong v(IrH)-v(CO) interaction, served for the assignment of the yellow halogenohydrido-(trimethylstannyl)carbonylbis(triphenylphosphine) complexes (III).

(Received, September 4th, 1968; Com. 1199.)

¹A. J. Chalk and J. F. Harrod, J. Amer. Chem. Soc., 1965, 87, 16.

R. N. Haszeldine, R. V. Parish, and D. J. Parry, J. Organometallic Chem., 1967, 9, P 13.
F. de Charentenay, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1968, 787.
F. Glockling and K. A. Hooton, J. Chem. Soc. (A), 1968, 826; J. K. Wittle and G. Urry, Inorg. Chem., 1968, 7, 560. ⁵ J. P. Collman, F. D. Vastine, and W. R. Roper, J. Amer. Chem. Soc., 1966, 88, 5035; 1968, 90, 2282.

⁶ L. Vaska and R. E. Rhodes, J. Amer. Chem. Soc., 1965, 87, 4970; S. J. LaPlaca and J. A. Ibers, *ibid.*, 1965, 87, 2581; S. J. LaPlaca and J. A. Ibers, *Inorg. Chem.*, 1966, 5, 405; L. Vaska, *Science*, 1966, 152, 769.
⁷ J. M. Jenkins and B. L. Shaw, Proc. Chem. Soc., 1963, 279; J. P. Collman and C. T. Sears, *Inorg. Chem.*, 1968, 7, 27. ⁸ L. Vaska, J. Amer. Chem. Soc., 1966, 88, 5325.

⁹ D. M. Adams, J. Chatt, J. Geratt, and A. D. Westland, *J. Chem. Soc.*, 1964, 734; D. J. Cardin and M. F. Lappert, *Chem. Comm.*, 1966, 506; F. Glockling and K. A. Hooton, *J. Chem. Soc.* (A), 1967, 1066.

¹⁰ J. M. Jenkins and B. L. Shaw, J. Chem. Soc., 1965, 6789; M. A. Bennett, R. J. H. Clark, and D. L. Milner, Inorg. Chem., 1967, 6, 1647. ¹¹ L. Vaska, J. Amer. Chem. Soc., 1966, 88, 4100.