Infrared Spectra and Structures of Matrix-isolated Disilicon, Digermanium, and Ditin Oxides $(Si_2O_2, Ge_2O_2, and Sn_2O_2)$

By J. S. ANDERSON, J. S. OGDEN,* and M. J. RICKS

(Inorganic Chemistry Laboratory, South Parks Road, Oxford)

In recent years there has been considerable interest in high-temperature vapour species, and the combined techniques of matrix isolation and i.r. spectroscopy have proved particularly useful in determining molecular structures.¹ This Communication describes part of an i.r. investigation of the Group IV oxides. Mass spectroscopic studies² of the vapours above heated Group IV oxides indicate that in addition to diatomic molecules MO (M = Si, Ge, Sn), dimeric and higher polymeric species are present, whose spectra and structures are unknown.

In our experiments, samples of the solid dioxides, monoxides, or metal-dioxide mixtures were studied, and the vapours were trapped in argon or nitrogen matrices at 15° K. The apparatus used is similar to that described by previous workers,3 and full experimental details will be given in a later paper. Several i.r. absorptions were observed in the range 5000-200 cm.-1. These could readily be assigned to a number of distinct molecular species by varying the experimental conditions (e.g. furnace temperature, matrix ratio, diffusion). As expected, all spectra showed a peak with a vibration frequency very close to that predicted from the ultraviolet spectrum of the corresponding gaseous MO molecule. These "matrix shifts" were always less than 6 cm.-1 and indicate that the molecular parameters are not significantly perturbed by the nitrogen and argon matrices. Two peaks corresponding to a second distinct species were also prominent in each oxide system. These were further investigated using ¹⁸O substitution, and in the resulting spectra, each of the two peaks became a triplet with intensity ratios ca. 1:2:1 for ca. 50% 18O enrichment. Evidently this species contains two symmetrically placed oxygen atoms and, on the basis of the mass spectrometric work, may correspond to

dimer M_2O_2 . No other peaks associated with this species were observed over the range 5000—200 cm.⁻¹. Figure 1 shows the two triplets observed in the Si–O system with *ca.* 50% ¹⁸O enrichment, whilst Table 1 lists all the frequencies assigned to M_2O_2 .

FIGURE 1. Infrared spectrum of Si_2O_2 in a nitrogen matrix.

White et al.,⁴ and Berkowitz,⁵ respectively, have shown that the structures of Li_2O_2 and several alkali halide dimers are based on a planar (V_h) rhombus, and have described the vibrational spectra in terms of a central force field. The remarkable similarity between the i.r. spectrum of Li_2O_2 , and the spectra described here for $M_2\text{O}_2$ suggests that these three molecules also have V_h symmetry. Two i.r.-active stretching modes $(B_{2u}$

TABLE 1. Infrared absorptions of Si₂O₂, Ge₂O₂, and Sn₂O₂ in nitrogen matrices

				Observed ratios		Calculated ratio
м	$M_{2}^{16}O_{2}$	Frequencies (cr M2 ¹⁶ O ¹⁸ O	n. ⁻¹) M ₂ ¹⁸ O ₂	$\frac{\nu_{B_{3u}}(^{16}\text{O})}{\nu_{B_{3u}}(^{18}\text{O})}$	$\frac{\nu_{B_{2}u}(^{16}O)}{\nu_{B_{2}u}(^{18}O)}$	$\left(rac{\mu_{ extsf{M}} + \mu_{ extsf{16}_{ extsf{O}}}}{\mu_{ extsf{M}} + \mu_{ extsf{18}_{ extsf{O}}}} ight)^{rac{1}{2}}$
Si	804.7 ± 0.5	$\begin{array}{c} \textbf{791.3} \pm \textbf{0.5} \\ \textbf{740.4} \pm \textbf{0.5} \end{array}$	$\frac{776\cdot2}{770}\pm\frac{0\cdot5}{0.5}$	1.0367 ± 0.0005	$1{\cdot}0369\pm0{\cdot}0005$	1.0373
Ge	766.3 ± 0.5 667 ± 1	749.4 ± 0.5 652 ± 1	739.0 ± 0.5 636 ± 1	$1{\cdot}049 \pm 0{\cdot}001$	1.048 ± 0.001	1.0495
Sn	$\begin{array}{c} 600 \pm 1 \\ 612 \cdot 6 + 0 \cdot 3 \end{array}$	$584 \pm 1 \\ 598 \cdot 5 + 0 \cdot 3$	$573 \pm 1 \\ 582 \cdot 2 + 0 \cdot 3$	1.0530 ± 0.0005	1.0522 ± 0.0005	1.0529
	$523\cdot2 \pm 0\cdot3$	$507\cdot3 \pm 0\cdot3$	496.9 ± 0.3			

$M_{2}O_{2}$			(F (n	$F_r + 2F_\gamma/r^2$) millidynes/Å)	$r_{M-O}(\text{\AA})$ †	Angle OMO
Si ₂ O ₂	••		••	3.71	1.71	93°
$G\bar{e}_2\bar{O}_2$				3.12	1.85	96°
Sn_2O_2	••	• •	••	2.70	2.04	99°
† Es	timat	ed erre	or ± 0.0)5 Å.		

TABLE 2. Estimated molecular parameters for Si₂O₂, Ge₂O₂, and Sn₂O₂

and B_{3u}) are expected, together with one i.r.active bending mode of symmetry B_{1u} . The form of the i.r.-active stretching vibrations is given in Figure 2a [assignment of the symmetry B_{2u} and B_{3u} between modes (i) and (ii) is arbitrary and depends on the choice of axes]. The model may also be considered in terms of a simple valence force potential function :---

$$2V = F_{r}(\Delta r_{1}^{2} + \Delta r_{2}^{2} + \Delta r_{3}^{2} + \Delta r_{4}^{2}) + F_{\gamma_{1}}(\Delta \gamma_{1}^{2} + \Delta \gamma_{3}^{2}) + F_{\gamma_{2}}(\Delta \gamma_{2}^{2} + \Delta \gamma_{4}^{2})$$
(1)

for the in-plane vibrations. F_r is the bondstretching force constant, and F_{γ_1} , and F_{γ_2} are in-plane bending constants (Figure 2b). This is considered a more realistic function than that based on an ionic model. The frequencies of the two i.r.-active stretching modes derived in terms of these constants are:----

$$\lambda_{B_{2u}} = 4\pi^2 v_{B_{2u}}^2 = 2(\mu_{\rm M} + \mu_{\rm o})(F_{\tau}\cos^2\theta + \frac{2F_{\gamma_1}}{r^2}\sin^2\theta) \quad (2)$$

$$\lambda_{\mathrm{B}_{3\mathrm{u}}} = 4\pi^{2} \mathsf{v}_{B_{3\mathrm{u}}}^{2} = 2(\mu_{\mathrm{M}} + \mu_{\mathrm{O}})(F_{r} \sin^{2}\theta + \frac{2F_{\mathrm{Y}_{2}}}{r^{2}} \cos^{2}\theta) \qquad (3)$$

where $\mu_{\mathbf{M}}$, μ_{0} are the reciprocal masses of the atoms M and O respectively, and 2θ is the angle < OMO. These equations show that:

$$\frac{\lambda_{B_{2u}}(M_2^{16}O_2)}{\lambda_{B_{2u}}(M_2^{18}O_2)} = \frac{\lambda_{B_{2u}}(M_2^{16}O_2)}{\lambda_{B_{3u}}(M_2^{18}O_2)} = \frac{\nu^2(^{16}O)}{\nu^2(^{18}O)} = \frac{(\mu_M + \mu_{16_0})}{(\mu_M + \mu_{18_0})}$$

where $M_2^{18}O_2$ refers to the fully substituted ¹⁸O species. Table 1 shows the observed and calculated frequency ratios for each of the two bands assigned to dimer M₂O₂. The low-frequency outof-plane mode B_{1u} was not observed, and presumably lies below 200 cm.⁻¹. On the basis of the agreement between observed and calculated ratios for $\nu(^{16}\mathrm{O})/\nu(^{18}\mathrm{O})$ it appears that the molecules Si₂O₂, Ge₂O₂, and Sn₂O₂ all have planar rhombic structures.

Equations (2) and (3) contain four unknowns F_r , F_{γ_1} , F_{γ_2} , and θ . It is possible however to make certain approximations and thus to obtain molecular dimensions. Assuming $F_{\gamma_1} = F_{\gamma_2} = F_{\gamma}$ we have:

$$2\pi^2 (\mathbf{v}_{B_{2_{11}}}^2 + \mathbf{v}_{B_{3_{11}}}^2) = (\mu_{\mathrm{M}} + \mu_{\mathrm{O}})(F_r + 2F_{\mathrm{Y}}/r^2)$$

Values for $(F_r + 2 F_{\gamma} r^2)$ are given in Table 2. These values are considerably lower than the corresponding force constants in the diatomic MO species, and this indicates a lower bond order and longer bond lengths. The latter may be estimated using the empirical relationships of Badger⁶ or Allen,⁷ together with data from SiO, GeO, and SnO,⁸ and putting $2F_{\gamma}/r^2 = F_r/10$ one obtains an estimate for $r_{\rm MO}$ in the species M_2O_2 (Table 2). It is also possible to estimate the bond < OMOangles assuming that the terms $2F_{\gamma_1}\sin^2\theta/r^2$ and $2F_{\gamma_2}\cos^2\theta/r^2$ in equations (2) and (3) are both small. This gives $\tan \theta =$ $v_{B_{3u}}/v_{B_{2u}}$. White *et al.*⁴ have assumed that $u_{B_{3u}} >
u_{B_{2u}} \text{ in Li}_2O_2, \text{ and hence that } \theta > 45^\circ.$ The < OMO bond angles calculated on this assumption are given in Table 2.

(Received, September 16th, 1968; Com. 1257.)

- ⁵ J. Berkowitz, J. Chem. Phys., 1958, 29, 1386.
- ⁶ R. M. Badger, J. Chem. Phys., 1935, 3, 710.
 ⁷ H. S. Allen and A. K. Longair, Nature, 1935, 135, 764.
- ⁸ See, e.g., G. Herzberg, "Molecular Spectra and Molecular Structure. I.", D. van Nostrand, Toronto, 1950.

¹ (a) W. Weltner, jun., and J. R. W. Warn, J. Chem. Phys., 1962, 37, 292; (b) W. Weltner, jun., and D. McLeod, ¹ J. Chem. Phys., 1965, **42**, 882; (c) A. Snelson, *J. Phys. Chem.*, 1966, **70**, 3208.
 ² J. Drowart and P. Goldfinger, Angew. Chem. Internat. Edn., 1967, **6**, 581.
 ³ D. E. Mann, G. V. Calder, K. S. Seshadri, D. White, and M. J. Linevsky, *J. Chem. Phys.*, 1967, **46**, 1138.
 ⁴ D. White, K. S. Seshadri, D. F. Dever, D. E. Mann, and M. J. Linevsky, *J. Chem. Phys.*, 1963, **39**, 2463.