Crystal Structure of the Unusual Product of Reaction between σ-(β-Acetylvinyl)dicarbonyl-(π-cyclopentadienyl)iron and Enneacarbonyldi-iron

By V. G. Andrianov* and Yu. T. Struchkov
(Institute of Organo-element Compounds, Academy of Sciences, of the U.S.S.R., Vavilova, 28, Moscow, U.S.S.R.)

THE reaction between σ-(β-acetylvinyl)dicarbonyl(π-cyclopentadienyl)iron and enneacarbonyldiiron gives ${ }^{1}$ the unusual π-complex whose structure has been proposed on the basis of its i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra:

To establish the structural formula of this new complex unequivocally and to determine the geometrical characteristics of the molecule we
have undertaken an X-ray study based on partial three-dimensional data. Crystal data: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6}$ $\mathrm{Fe}_{2}, M=386$, monoclinic, space group $P 2_{1} / c, a=$ $12 \cdot 86, \quad b=8.70, \quad c=13.96 \AA, \quad \beta=110 \cdot 5^{\circ}, \quad U=$ $1463 \AA^{3}, D_{\mathrm{m}}=1.72, D_{\mathrm{c}}=1 \cdot 76, Z=4$.

Intensities of $c a .650$ independent reflections were estimated visually, disregarding absorption corrections, from $h 0^{\prime}-3 l$ layers taken in the equiinclination Weissenberg goniometer with unfiltered $\mathrm{Cu}-K_{\alpha}$ radiation. The structure was solved by the standard heavy-atom technique and refined by the isotropic full-matrix least squares method. The discrepancy index is $R=0.096$ with the mean overall temperature factor $B=$ $4 \cdot 8 \AA^{2}$. The probable errors in interatomic distances are: $\mathrm{Fe}-\mathrm{Fe}, \pm 0.00_{7} ; \mathrm{Fe}-\mathrm{C}, \pm 0.01 ; \mathrm{C}-\mathrm{O}$, $\pm 0.02 ; \mathrm{C}-\mathrm{C}, \pm 0.02 \AA$.

The molecular configuration is represented in the

Figure which also shows bond-lengths and angles. One of the iron atoms, $\mathrm{Fe}(2)$, is connected with the acetylvinyl radical by a σ-bond, the other, $\mathrm{Fe}(\mathbf{1})$, participates in a π-interaction with the ethylenic bond of this ligand. The $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ bond length $2 \cdot 55_{6} \AA$ does not differ fundamentally from those found in other binuclear iron π-complexes with bridging ligands $\left\{\right.$ e.g. $2 \cdot 49 \AA$ in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}-\right.$ $\left.(\mathrm{CO})_{2}\right]_{2}{ }^{2}$ and $2 \cdot 527 \AA$ in reddish-orange isomer of $\left.\left.\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{C}_{2} \mathrm{H}_{2}\right)_{3}{ }^{3}\right\}$. As usual this interatomic distance is shorter than the $\mathrm{Fe}-\mathrm{Fe}$ bond-length in π-complexes without bridging ligands. The interatomic interactions result in the formation of a highly strained four-membered metallocycle containing $\mathrm{Fe}(1), \mathrm{C}(12), \mathrm{C}(11)$, and $\mathrm{Fe}(2)$ atoms. The co-ordination around the $\mathrm{Fe}(1)$ atom is distorted octahedral with the ethylenic $\mathrm{C}(11)-\mathrm{C}(12)$ bond to one of the terminal carbonyl groups, $\mathrm{C}(7) \mathrm{O}(2)$. The $\mathrm{M}-\mathrm{Fe}(1)-\mathrm{C}(7)$ angle is 156° [where M is the midpoint of the $\mathrm{C}(11)-\mathrm{C}(12)$ bond]. The other iron atom $\mathrm{Fe}(2)$ is seven-co-ordinate and $\mathrm{Q}-\mathrm{Fe}-\mathrm{L}$ angles vary in the range $125-132^{\circ}$, which is normal for such configurations [Q is the centre of the cyclopentadienyl ring, $\mathrm{L}=$ other ligands $]$. The $\mathrm{Fe}(1)-\mathrm{C}(11)$ and $\mathrm{Fe}(1)-\mathrm{C}(12)$ distances (2.04 and $2 \cdot 05 \hat{A}$ respectively) are close to those usually found in iron complexes containing cthylenic ligands: $2.04 \AA$ in the racemic complex $\mathrm{Fe}(\mathrm{CO})_{4}$-fumaric acid, ${ }^{4} \quad 2 \cdot 09$ and $2 \cdot 10 \AA$ in $(\mathrm{C})_{4} \mathrm{Fe}\left(\mathrm{CH}_{2}=\mathrm{CHCN}\right){ }^{5}$. The mean $\mathrm{Fe}(2)-\mathrm{C}(\pi-$ $\mathrm{C}_{5} \mathrm{H}_{5}$) distance is $2 \cdot 10 \AA$, a typical value for semisandwich iron-cyclopentadienyl π-complexes. The $\pi-\mathrm{C}_{5} \mathrm{H}_{5}$ is planar (the maximum deviation from planarity is $c a .0 .01 \AA$) with an average $\mathrm{C}-\mathrm{C}$ bond length of $1 \cdot 45 \AA$.

The interatomic $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances for terminal carbonyl groups are normal (average values 1.79 and $1.16 \AA$ respectively). However, in contrast to most iron-carbonyl complexes studied there are significant divergencies of $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ fragments from linearity. The maximum divergence amounts to $c a .24^{\circ}$ for the $\mathrm{Fe}(2)$ -$\mathrm{C}(9)-\mathrm{O}(4)$ group. These deformations are probably due to large steric hindrances resulting from seven-co-ordination around $\mathrm{Fe}(2)$ [there are many non-valence intramolecular contacts involving the $\mathrm{C}(9)$ atom which are shorter than $2 \cdot 6-2 \cdot 8 \AA]$.

The bridging carbonyl group is symmetrically disposed relative to both iron atoms, but the Fe-C(bridge) distance, $2.05 \AA$, is distinctly longer than those usually found for carbonyl bridges $\left\{1.85 \AA\right.$ in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}{ }^{2}$ and $1.91 \AA$ in $\left.\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO}) \mathrm{Fe}(\mathrm{CO})(\mathrm{C}=\mathrm{NPh}) \mathrm{Fe}(\mathrm{CO})\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)^{6}\right\}$. The $O(5)$ atom projects out of the $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{C}(10)$ plane by as much as $0 \cdot 4 \AA$.

Comparison of the $\mathrm{Fe}-\mathrm{C} \sigma$-bond-length found
here ($2.09 \AA$) with analogous distances involving carbon atoms of various ligands shows that this bond distance is rather insensitive to the ligand. Thus in the black isomer of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{3}{ }^{7}$ it is $2 \cdot 123 \AA$, in complexes containing aromatic ligands, such as $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right)^{8}$ and $\left(\pi\right.$ - $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}-$ $(\mathrm{CO})\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{PPh}_{3},{ }^{9}$ it is $2 \cdot 11$ and $2 \cdot 12 \AA$ respectively.

Figure
It is of interest that in the complex studied the acetylvinyl ligand acquires the cis-conformation as distinct from the energetically more favoured trans-form existing in the free ligand molecule. Such a configurational difference is probably steric in origin since a trans-conformation for the acetylvinyl ligand would give rise to intolerably short distances (ca. $2 \cdot 8-3 \cdot 1 \AA$) between the Megroup and the $\mathrm{C}(8)$ and $\mathrm{O}(3)$ atoms of the neighbouring carbonyl group. Still more noticeable is the fact that the π-interaction of the ethylenic part of this ligand with $\mathrm{Fe}(1)$ does not result in the lengthening of the $\mathrm{C}(11)-\mathrm{C}(12)$ bond (this distance $1 \cdot 35 \AA$ compares well with the standard $\mathrm{C}=\mathrm{C}$ double bond-length $1 \cdot 337 \AA^{10}$) contrary to what was established for most π-complexes of this type. A 'double bond preservation' is consistent with a planar system comprising the $\mathrm{Fe}(2), \mathrm{C}(11), \mathrm{C}(12)$, $\mathrm{C}(13), \mathrm{C}(14)$, and $\mathrm{O}(6)$ atoms, though the $\mathrm{Fe}(2)-$ $\mathrm{C}(11)-\mathrm{C}(12)$ and $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ bond angles
are very nearly tetrahedral (111 and 109° respectively). The decrease in these angles may, however, be due to a drawing together action of the $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ bond by metallocycle closure. The other bond distances and angles in the acetylvinyl ligand have the usual values. The increase in the $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(6)$ bond angle to 126° and a corresponding decrease in the other two angles at
the $\mathrm{C}(13)$ atom may be a trivial consequence of mutual repulsion between these atoms and the $\mathrm{C}(8) \mathrm{O}(3)$ carbonyl group.

We intend to clarify some unusual geometrical features of this molecule by means of an X-ray investigation of a series of analogous π-complexes with β-ketovinyl ligands.
(Received, September 13th, 1968; Com. 1249.)

[^0]
[^0]: ${ }^{1}$ A. N. Nesmeyanov, L. V. Rybin, M. I. Rybinskaya, V. S. Kaganovich, Yu. A. Ustin'yuk, and I. F. Lescheva, Zhur. obshchei. Khim., 1968, in the press.
 ${ }^{2}$ O. S. Mills, Acta Cryst., 1958, 11, 620.
 ${ }^{3}$ P. Piret, J. Meunier-Piret, and M. van Meerssche, Acta Cryst., 1965, 19, 78.
 ${ }^{4}$ C. Pedone and A. Sirigu, Acta Cryst., 1967, 23, 759.
 ${ }^{5}$ A. R. Luxmoore and M. R. Truter, Acta Cryst., 1962, 15, 1117.
 ${ }^{6}$ K. K. Joshi, O. S. Mills, P. L. Pauson, B. W. Shaw, and W. H. Stubbs, Chem. Comm., I965, 181.
 ${ }^{7}$ J. Meunier-Piret, P. Piret, and M. van Meerssche, Acta Cryst., 1965, 19, 85.
 ${ }^{8}$ M. J. Bennett, F. A. Cotton, A. Davison, J. W. Faller, S. J. Lippard, and S. M. Morehouse, J. Amer. Chem. Soc., 1966, 88, 4371.
 ${ }^{9}$ R. L. Avoyan, Yu. A. Chapovskii, and Yu. T. Struchkov, Zhur. strukt. Khim., 1966, 7, 645.
 10 "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ., No. 11, 1958.

