Reactions of Benzaldehyde Acetals with Butyl-lithium: a Stereospecific Olefin Synthesis

By J. N. HINES, M. J. PEAGRAM, G. H. WHITHAM,* and M. WRIGHT (Dyson Perrins Laboratory, South Parks Road, Oxford)

In the course of our work on medium ring compounds we wished to develop a stereospecific route to trans-cyclo-octenes which did not suffer from the disadvantages of Corey's thionocarbonate inethod,¹ namely, relative inaccessibility of starting material, and prolonged reaction time at elevated temperature. The hitherto neglected observation of Wharton et al.² that 2-phenyl-1,3-dioxolan underwent fragmentation to ethylene on reaction with phenyl-lithium prompted us to investigate the behaviour of the benzylidene derivative of transcyclo-octane-1,2-diol (I) towards alkyl-lithium derivatives. In the event, treatment of (I) in light petroleum with n-butyl-lithium in hexane (2.0 mol.) at 20° followed after 14 hours† by quenching with water gave trans-cyclo-octene (75%), shown to be uncontaminated with the cis-isomer by g.l.c., together with butyl phenyl ketone.

The success and high stereospecificity of this olefin-forming reaction led us to make a preliminary study of the reaction of a number of benzaldehyde acetals with butyl-lithium in order to delineate the gross mechanistic features of the process (see Table).

The main conclusions we deduce from this survey are: (i) the anion derived from benzaldehyde diethyl acetal decomposes predominantly by internal E_2 elimination[‡] (II) and partly by a modified Wittig rearrangements involving (III) as

an intermediate; (ii) the anion from 2-phenyl-1,3dioxan partly undergoes a modified Wittig rearrangement⁺ via (IV); (iii) the anions from 1,3dioxolans react by cyclo-elimination to give olefin and benzoate ion via proton-abstraction from C-2, or benzaldehyde and an enolate ion by protonabstraction from C-4 (or C-5) (where these positions bear an aryl group).¶

Products from benzaldehyde acetals and huibutyl-litm in tetrahydrofuran

	Acetal	Products (yield $\%$)
1.	Benzylidene derivative of (\pm) -hydrobenzoin	trans-stilbene (9), deoxy- benzoin(66), 1-phenyl- pentan-1-ol (64)
2.	Benzylidene deri- vative of <i>meso</i> - hydrobenzoin (mixture of diastereoisomers)	deoxybenzoin (67), 1-phenylpentan-1-ol (70)
3.	Benzaldehyde diethyl acetal	1-phenylpentan-1-ol (50), benzaldehyde (20), propiophenone (15), 3-phenyloctan-3-ol (5)
4.	2-Phenyl-1,3-dioxan	4-phenylnonane-1,4-diol (30), 1-phenylpentan-1-ol (17)
۱	PhCH	$H \leftarrow CH_2$ Et Pho CH_2 Ph-C-O-

⊊[|]_{OEt}

αD

ÓEt

(III)

[†] The reaction is more rapid (complete in 1 hr.) with tetrahydrofuran as solvent; however, addition of butyl-lithium to trans-cyclo-octene occurs to a significant extent under these conditions.

(I)

An intramolecular elimination in the reaction of benzyl ethyl ether with propylsodium (R. L. Letsinger and D. F. Pollart, J. Amer. Chem. Soc., 1965, 78, 6079) provides a precedent. § Wittig rearrangements of acetals do not appear to have been observed previously.

The predominance of products derived from proton-abstraction at C-4 (or C-5) in the case of the dioxolans from the hydrobenzoins, may be ascribed to the lower stability of a carbanion adjacent to two rather than one oxygen atom (J. Hine, L. G. Mahone, and C. L. Liotta, J. Amer. Chem. Soc., 1967, 89, 5911).

For 1,3-dioxolans the intramolecular cis-elimination and the modified Wittig rearrangement (4-ring transition state) are effectively prohibited for steric reasons, thus providing maximum opportunity for the cyclo-elimination to occur. We regard the latter as a symmetry-allowed process

which is effectively the reverse of a 1,3-dipolar cyclo-addition reaction.3

The power of the dioxolan olefin synthesis can be further exemplified by the preparation of the diastereoisomerically pure trans-cyclo-oct-2-enyl methyl ethers (V) and (VI) by reaction of the benzylidene derivatives from trans, cis- and cis,trans-2,3-dihydroxycyclo-octyl methyl ether respectively with butyl-lithium in hexane-tetrahydrofuran. The methyl ether (V) was identical with the methylation product of the previously prepared trans-cyclo-oct-2-enol.4

(Received, September 23rd, 1968; Com. 1290.)

¹ E. J. Corey and J. I. Shulman, Tetrahedron Letters, 1968, 3655; E. J. Corey, F. A. Carey, and R. A. E. Winter, J. Amer. Chem. Soc., 1965, 87, 934; E. J. Corey and R. A. E. Winter, *ibid.*, 1963, 85, 2677. ² P. S. Wharton, G. A. Hiegel, and S. Ramaswami, J. Org. Chem., 1964, 29, 2441. ³ R. Huisgen, Angew. Chem. Internat. Edn., 1963, 2, 639; J. Org. Chem., 1968, 33, 2291.

⁴ G. H. Whitham and M. Wright, *Chem. Comm.*, 1967, 294.