The Formation of C_5^+ by Electron Impact on Perchloro-cyclopentadiene and -benzene,

By Lothar Schäfer

(Department of Chemistry, University of Arkansas, Fayetteville, Arkansas 72701)

PERCHLOROCYCLOPENTADIENE, C_6Cl_6 , is known to react as a chlorinating agent.¹ The reactivity of the chlorine atoms at the quaternary carbon atom allows the formation of adducts with Lewis acids,^{2,3} some of which decompose with a triplet e.p.r. signal³ which suggests the perchlorocyclopentadienyl cation, $C_{s}Cl_{s}^{+}$, as a decomposition intermediate.

The high tendency of C_sCl_6 to form $C_sCl_5^+$ is also shown by the mass spectrum (Table). The ion

CHEMICAL COMMUNICATIONS, 1968

Mass spectrum of hexachlorocyclopentadiene, C₅Cl₆

m/e	Species*	Relative intensity	m/e	Species*	Relative intensity	m/e	Species*	Relative intensity
	opeeres	•	106		7.3	200	1	0.9
47	001+	$11.4 \\ 0.6$	108	C ₃ Cl ⁺	4.4	$\frac{200}{201}$		$3 \cdot 1$
47.5	CC1+	2.5	108	C_3Cl_2	1.1	$\frac{201}{202}$	$C_5Cl_4^+$	0.9
48		2·5 3·9	110		1.1	$\frac{202}{203}$	C5C14	3.9
49		2.9	117		12.0	$\frac{203}{204}$		0.7
-0	0.01+	1.6	$117 \\ 117.5$		8.4	$\frac{204}{205}$		1.7
59	$\begin{array}{c} C_2 Cl^+ \\ C_5^+ \end{array}$	22·1	117.5		5.3	$\frac{203}{206}$		0.6
60	C_5^+	$\frac{22 \cdot 1}{2 \cdot 1}$	118 118-5		13.7	200		00
61		2.1	118.5	CCl ⁺	10.8	235		62.5
65		12.2	119.5	$C_5Cl_5^{2+}$	10.3	$235 \\ 236$		4.6
		0.6	119.5	C ₅ Cl ₅ -	3.5	$\frac{230}{237}$		100.0
65·5	C C1 2+	0.0 7.1	$120 \\ 120.5$		3·0	$\frac{231}{238}$	C ₅ Cl ⁺	6·8
66	$C_5 Cl_2^{2+}$		120.5		$3.0 \\ 3.5$	$\frac{238}{239}$	C5C15	65.1
66.5		0.6	121		5.9	$\frac{239}{240}$		4.6
67		1.3	190		$24 \cdot 3$	$\frac{240}{241}$		20.6
- 1	0.01	0.9	130		$24\cdot 3$ $2\cdot 2$	$\frac{241}{242}$		1.6
71	C ₃ Cl+	9.3	131	C C1+		$\frac{242}{243}$		3.9
73		3.9	132	$C_5Cl_2^+$	$16 \cdot 1$ $1 \cdot 3$	$\frac{243}{244}$		0.4
0.3		10	133		3.0	244		0.4
82		1.0	134					
82.5	$CCl_2^+, C_4^-Cl^-$	$\frac{2 \cdot 4}{5 \cdot 6}$	135		1.0	270		9.3
83	0.01.95	5.6	1.41		15.7	$\frac{270}{271}$		9·3 0·6
83.5	$C_5Cl_3^{2+}$	2.1	141			$\frac{271}{272}$		17.9
84		1.3	142	C CL	0.9	$\frac{272}{273}$	C C 1+	1.4
84.5		1.3	143	C ₃ Cl [±]	15.7		$C_5Cl_6^+$	14
85		$2 \cdot 2$	144		0.9	$274 \\ 075$		14.4
		0.1	145		4.9	$\begin{array}{c} 275\\ 276\end{array}$		6.7
94	C CH+ C CH	3.1	147		0.9	$\frac{276}{277}$		0.2
95	$C_{2}Cl_{2}^{+}, C_{5}Cl^{+}$	32.5	105		14.0			2.0
96		3.5	165		14.6	278		2.0
97		9.5	166	0.01+	1.5			
98		1.5	167	$C_5Cl_3^+$	13.3			
100		5 1	168		1.1			
100		5.1	169		5.0			
100.5	C C1 2+	0.9	170		0.4			
101	$C_{5}Cl_{4}^{2+}$	6.8	171		1.0			
101.5		0.8						
102		3.6						
102.5		0.8						
103		0.9						

* The listed formulae refer to a group of m/e values. Only the most important formulae are given.

of largest abundance in the 20—80 v ionization range was $C_5Cl_5^+$. Further release of chlorine was observed in an interesting ion sequence: $C_5Cl_5^+$, $C_5Cl_4^+$, $C_5Cl_5^+$, $C_5Cl_7^+$, $C_5Cl_7^+$, and C_5^+ .

This is the principal difference between the mass spectra of hexachloro- and hexamethyl-cyclopentadiene.⁴ In the mass spectrum of the latter compound, masses lower than that of the five-membered cation do not retain their cyclopentadienyl structure but undergo rearrangement, probably to a cyclic benzenium-type ion.⁴

The existence of C_5^+ is deduced from a distinct peak at m/e 60 with a side peak at m/e 61. This signal cannot be assigned to a compound containing chlorine, since there is no peak at m/e 62. With multiply-increased sensitivity an m/e 62 signal can be observed, its intensity varying between 1.0 and 2.0% of that at m/e 60. This value, of course, is very uncertain. It should be 0.15% o; the 60 m/e signal due to carbon isotopes from C_5^+f and 30%, for a compound containing chlorine.

In different spectra, the m/e 61 intensity is between 5.5 and 9% of the 60 m/e signal. This value should be 5.5% for a $C_5^+ m/e$ 60. An interference of the m/e 59 ion must be considered in this peak, if m/e 59 is assigned to C_2 Cl⁺.

In some parts of the spectrum doubly charged ions are observed, for example, $C_5Cl_5^{2+}$, $C_5Cl_4^{2+}$, $C_5Cl_2^{3+}$, $C_5Cl_2^{2+}$. The 59, 60, 61 m/e sequence cannot be assigned to a doubly charged $C_4Cl_2^{2+}$, since no half masses are seen, due to ¹³C.

For hexafluorobenzene, $C_6F_6^+$, an ion sequence $C_5F_5^+$, $C_5F_4^+$, $C_5F_5^+$, $C_5F_2^+$, and $C_5F_7^+$, is observed.⁵ In the spectrum of hexachlorobenzene $C_5Cl_5^+$, $C_5Cl_5^+$, $C_5Cl_5^+$, $C_5Cl_5^+$, $C_5Cl_7^+$, and C_5^+ are observed, with weak relative intensities.

It is impossible at present to give structural details concerning the observed C_5^+ system. Thus, it is impossible to decide whether this compound is cyclic or linear.

The author thanks Mrs. P. Schroeder for her

assistance during the recording of the mass spectra, Prof. W. Cordes for many suggestions, and the National Science Foundation for the use of the mass spectrometer.

(Received, October 17th, 1968; Com. 1418.)

- ¹ H. P. Fritz and L. Schäfer, Z. Naturforsch., 1964, 19b, 169.
 ² H. P. Fritz and L. Schäfer, J. Organometallic Chem., 1964, 1, 318.
 ³ R. Breslow, R. Hill, and E. Wassermann, J. Amer. Chem. Soc., 1964, 86, 5349.
 ⁴ A. G. Harrison, P. Haynes, St. McLean, and F. Meyer, J. Amer. Chem. Soc., 1965, 87, 5099.
 ⁵ V. H. Dibeler, R. M. Reese, and F. L. Mohler, J. Chem. Phys., 1957, 26, 304.

1624