1633

Vibrational Spectrum and Structure of Fluorine Peroxide O_2F_2

By K. R. Loos,* C. T. GOETSCHEL, and V. A. CAMPANILE

(Shell Development Company, Emeryville, California 94608)

THE structure of O_2F_2 has been known for some time from microwave studies,¹ and several of the vibrational frequencies have been either estimated¹ or observed;²⁻⁴ however, no complete i.r. spectrum of this molecule has yet appeared. Although the molecule has the same symmetry as H_2O_2 , namely C_2 , the O-O bond is much shorter than that in H_2O_2 (1·217 Å vs. 1·48 Å), being about the same as that of O_2 , while the O-F bonds are considerably longer than those in OF₂ (1·575 Å vs. 1·409 Å). Thus the O-O bond seems to retain double bond character, while the O-F bonds are weaker than regular OF single bonds.

We have observed and analyzed the i.r. spectra of solid ${}^{16}O_2F_2$ and ${}^{18}O_2F_2$. Spectra were

recorded at 77° k over the range 3000—350 cm.⁻¹ with the sample suspended between two AgCl plates; below 350 cm.⁻¹ it proved possible to obtain the spectrum with the sample suspended between two high-density polyethylene slabs. Although some reaction with the polyethylene was noted, it did not prove a serious problem at these low temperatures.

The O_2F_2 was prepared by radiolysis of liquid mixtures of O_2 and F_2 at 77° κ followed by thermal decomposition of the superoxides of fluorine.⁵ At low temperatures O_2F_2 is a pale yellow solid which melts sharply at 119° κ .

It appeared surprising that the O-O stretching vibration does not appear in the vicinity of 1500

cm.⁻¹, where it has been located for the O₉F radical,^{3,4} whose bonding is believed to be analogous to that in O_2F_2 . Instead, it appears that the O-O stretching mode occurs at 1306 cm.⁻¹ for O_2F_2 . This has been confirmed by the results of studies with oxygen-18. For ${}^{18}O_2F_2$ the band at 1306 cm.⁻¹ disappears and is replaced by one at 1239 cm.⁻¹.

The fundamental frequencies of ${}^{16}O_2F_2$ and ¹⁸O₂F₂ are listed in the Table along with their

Fundamental vibrations of O₂F₂

v (cm. ⁻¹)		
16O2E2	$^{'18}O_2F_2$	Assignment
1306	1239	OO str.
621	595	O–F sym. str.
615	586	O–F anti-sym. str.
457	444	O–O–F anti-sym. bend
369	362	O–O–F sym. bend
205	—	Torsion

tentative assignment based upon a normal coordinate analysis. The torsional fundamental was not observed for ¹⁸O₂F₂ since insufficient oxygen-18 was available for a sample large enough to enable this weak transition to be located. From the normal co-ordinate analysis it appears that there is no normal vibration composed of a purely torsional motion. This complicates the calculation of the internal rotation barrier and makes a comparison with H₂O₂ difficult.

The results of a molecular-orbital calculation carried out by us, using the extended Hückel approximation, confirm the earlier description of the bonding in $O_2F_2^{1,3}$ in which the strength of the O-O bond is explained by the interaction of the electronegative fluorine atoms with the unpaired π^* orbitals on the oxygens to form a three-centre (O-O-F) molecular orbital, which is anti-bonding with respect to O-O, but bonding with respect to O-F. Thus, the overall O-O bond order remains virtually the same, but the O-F bonds are weakened because they are part of a three-centre bonding system instead of being regular twocentre, two-electron bonds.

This work was supported in part by a contract from the Advanced Research Projects Agency, through the U.S. Army Research Office, Durham, North Carolina.

(Received, October 29th, 1968; Com. 1470.)

- ¹ R. M. Jackson, *J. Chem. Soc.*, 1962, 4585. ² H. W. Brown, unpublished work.
- ³ R. D. Spratley, J. J. Turner, and G. C. Pimentel, J. Chem. Phys., 1966, 44, 2063.
- ⁴ A. Arkell, J. Amer. Chem. Soc., 1965, 87, 4057.
 ⁵ C. T. Goetschel, V. A. Campanile, C. D. Wagner, and J. N. Wilson, publication in preparation.