The Structure of π-Allyl(triphenylphosphine)palladium-trichlorotin

By R. Mason,* G. B. Robertson, and P. O. Whimp
(Department of Chemistry, University of Sheffield, Sheffield, 537 HF)
and D. A. White
(Department of Chemistry, Manchester University Institute of Science and Technology)

ThE preparation of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}\left(\mathrm{PPh}_{3}\right) \mathrm{SnCl}_{3}$ results from the reaction of SnCl_{2} with $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)$ Cl. ${ }^{1}$ The reaction of the similar compound (π $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}^{2}{ }^{2}$ with SnCl_{2} is reported here. Treatment of $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$, or a mixture ($1: 2$ mole ratio) of the dimer $\left[\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{]_{2}}\right.$ and triphenylphosphine, with SnCl_{2} in acetone gives a ycllow compound (I) in high yield. Analysis indicates that (I) has the formula $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)$ $\mathrm{SnCl}_{3}, \frac{1}{2} \mathrm{Me}_{2} \mathrm{CO}$, and conductance measurements show it to be a non-electrolyte in nitrobenzene. Its proton n.m.r. spectrum (CDCl_{3}) shows that a π-allyl group is present. The terminal allylic protons give rise to broad resonances, but the band-widths are unchanged at -40°. This suggests that the broadening is most probably due to coupling with other nuclei, rather than to the exchange phenomena of the type shown by $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}^{2-5} \quad$ The n.m.r. spectrum confirms the presence of acetone in the molecule, and this is also shown by the i.r. spectrum (bands at 1710 and $1204 \mathrm{~cm} .^{-1}$). In the far-i.r. region, (I) does not show the expected doublet (at $330 \mathrm{~cm} .^{-1}$), characteristic of the $\mathrm{SnCl}_{3}{ }^{-}$ligand. ${ }^{6,7}$ Three strong bands are observed at 329,302 , and 296 $\mathrm{cm} .^{-1}$, but these bands have not, as yet, been assigned.

The structure of $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{SnCl}_{3}, \frac{1}{2} \mathrm{Me}_{2}{ }^{-}$ CO has been determined by three-dimensional X-ray analysis. The crystals are monoclinic,
space group $P 2_{1} / c, a=12 \cdot 80, b=22 \cdot 03, c=9 \cdot 44 \AA$ $\beta=103 \cdot 2^{\circ}, Z=4$. For the 2298 independent non-zero reflexions measured on a Pailred automatic diffractometer, with $F_{\mathrm{o}}^{2} / \sigma\left(F_{\mathrm{o}}^{2}\right) \geqslant 3 \cdot 0, R=$ 0.055 . The corresponding e.s.d's for the more important bond-lengths shown in the Figure are: $0.002, \mathrm{Pd}-\mathrm{Sn} ; 0.005, \mathrm{Pd}-\mathrm{P} ; 0.02, \mathrm{Pd}-\mathrm{C} ; 0.006$, $\mathrm{Sn}-\mathrm{Cl} ; 0.02, \mathrm{P}-\mathrm{C} ; 0.03 \AA, \mathrm{C}-\mathrm{C}$.

Figure

The molecules consists of a palladium atom, bonded to an SnCl_{3} - ligand, a triphenylphosphine ligand, and an allyl group in an approximately
planar manner. This is the first reported structure of a derivative containing a palladium-tin bond. The atoms $C(1)$ and $C(3)$ are $+0.01 \AA$ and $-0.01 \AA$ respectively from the palladium coordination plane (as defined by Pd, Sn, and P), while the central atom of the allyl group, $\mathrm{C}(2)$, is $-0.62 \AA$ from this plane: $\mathrm{Sn}-\mathrm{Pd}-\mathrm{P}, 99^{\circ} ; \mathrm{Sn}-\mathrm{Pd}-$ $\mathrm{C}(1), 90^{\circ}$; $\mathrm{Sn}-\mathrm{Pd}-\mathrm{C}(3), 157^{\circ}$; $\mathrm{P}-\mathrm{Pd}-\mathrm{C}(3), 104^{\circ}$; $\mathrm{P}-\mathrm{Pd}-\mathrm{C}(1), 171^{\circ} ; \mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3), 67^{\circ}$. The average $\mathrm{Sn}-\mathrm{Cl}$ distance is $2.38 \AA$ while the mean bondangles $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{Sn}-\mathrm{Cl}$ are 95° and 121° respectively. The mean $\mathrm{P}-\mathrm{C}$ bond distance is $1.82 \AA$, compared with $1.81 \AA$ found in $\left(\pi-\mathrm{C}_{4} \mathrm{H}_{7}\right)$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl} .^{8}$

The $\mathrm{Pd}-\mathrm{Sn}$ distance is $2.56 \AA$; this is considerably shorter than the distance of $2.80 \AA$ reported for $\mathrm{Pt}-\mathrm{Sn}$ in $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Pt}_{3}\left(\mathrm{SnCl}_{3}\right)_{3}\right],{ }^{9}$ in which the tin atom is in an octahedral environment, being surrounded by three platinum and three chlorine atoms. The $\mathrm{Pd}-\mathrm{Sn}$ distance does, however, correspond to the $\mathrm{Pt}-\mathrm{Sn}$ distance of $2.54 \AA$ reported for the complex $\left[\mathrm{Ph}_{3} \mathrm{PMe}\right]_{3} \mathrm{Pt}\left(\mathrm{SnCl}_{3}\right)_{5},{ }^{10}$
in which the tin is four-co-ordinate. The observed metal-metal bond-length is approximately $0 \cdot 1 \AA$ less than the sum of covalent radii.

The allyl group is symmetrically bonded to the palladium atom, the $\mathrm{Pd}-\mathrm{C}$ (terminal) distances being equal within 1.5σ; the dihedral angle between the allyl plane and that containing the palladium, tin, and phosphorus atoms is 110°. The $\mathrm{Pd}-\mathrm{C}($ terminal) distances are significantly longer ($2 \cdot 19 \AA c f$., $2 \cdot 12 \AA$) than those observed for $\left[\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}\right]_{2} .{ }^{11}$ The equality of the $\mathrm{Pd}-\mathrm{C}(1)$ and $\mathrm{Pd}-\mathrm{C}(3)$ bond lengths suggests that the transdirecting influence of the $\mathrm{SnCl}_{3}-$ ligand and the triphenylphosphine group are comparable, in accordance with a previous report, ${ }^{6}$ which suggests, on the basis of spectroscopic evidence, that the trans-directing influence of the SnCl_{3} - ligand lies between the thiocyanate ion and the cyanide ion.

We thank the S.R.C. for financial support of these studies.
(Received, October 30th, 1968; Com. 1485.)
${ }^{1}$ M. van den Akker and F. Jellinek, J. Organometallic Chen., 1967, 10, P37.
${ }_{2}$ J. Powell, S. D. Robinson, and B. L. Shaw, Chem. Comm., 1965, 78.
${ }^{3}$ K. Vrieze, C. Maclean, P. Cossee, and C. W. Hilbers, Rec. Trav. chim., 1966, 85, 1077.
${ }^{4}$ K. C. Ramey and G. L. Stratton, J. Amer. Chem. Soc., 1966, 88, 4387.
${ }^{5}$ F. A. Cotton, J. W. Faller, and A. Musco, Inorg. Chem., 1967, 6, 179.
${ }^{6}$ R. V. Lindsey, G. W. Parshall, and U. G. Stolberg, J. Amer. Chem. Soc., 1965, 87, 658.
${ }^{7}$ D. M. Adams and P. J. Chandler, Chem. and Ind., 1965, 269.
${ }^{8}$ R. Mason and D. R. Russell, Chem. Comm., 1966, 26.
${ }^{9}$ L. J. Guggenberger, Chem. Comm., 1968, 512.
${ }^{10}$ R. D. Cramer, R. V. Lindsey, C. T. Prewitt and U. G. Stolberg, J. Amer. Chem. Soc., 1965, 87, 658.
${ }^{11}$ A. E. Smith, Acta Cryst., 1965, 18, 331.

