The Structure of π -Allyl(triphenylphosphine)palladium-trichlorotin

By R. MASON,* G. B. ROBERTSON, and P. O. WHIMP (Department of Chemistry, University of Sheffield, Sheffield, 53 7HF)

and D. A. WHITE

(Department of Chemistry, Manchester University Institute of Science and Technology)

The preparation of $(\pi$ -C₅H₅)Ni(PPh₃)SnCl₃ results from the reaction of SnCl₂ with $(\pi$ -C₅H₅)Ni(PPh₃)-Cl.¹ The reaction of the similar compound (π -C₃H₅)Pd(PPh₃)Cl,² with SnCl₂ is reported here. Treatment of $(\pi$ -C₃H₅)Pd(PPh₃)Cl, or a mixture (1:2 mole ratio) of the dimer $[(\pi - C_3H_5)PdCl]_2$ and triphenylphosphine, with SnCl₂ in acetone gives a vellow compound (I) in high yield. Analysis indicates that (I) has the formula $(\pi$ -C₃H₅)Pd(PPh₃)-SnCl₃, ¹/₂Me₂CO, and conductance measurements show it to be a non-electrolyte in nitrobenzene. Its proton n.m.r. spectrum $(CDCl_3)$ shows that a π -allyl group is present. The terminal allylic protons give rise to broad resonances, but the band-widths are unchanged at -40° . This suggests that the broadening is most probably due to coupling with other nuclei, rather than to the exchange phenomena of the type shown by $(\pi$ -C₃H₅)Pd(PPh₃)Cl.²⁻⁵ The n.m.r. spectrum confirms the presence of acetone in the molecule, and this is also shown by the i.r. spectrum (bands at 1710 and 1204 cm. $^{-1}$). In the far-i.r. region, (I) does not show the expected doublet (at 330 cm.⁻¹), characteristic of the SnCl₃- ligand.^{6,7} Three strong bands are observed at 329, 302, and 296 cm.-1, but these bands have not, as yet, been assigned.

The structure of $(\pi$ -C₃H₅)Pd(PPh₃)SnCl₃, $\frac{1}{2}$ Me₂-CO has been determined by three-dimensional X-ray analysis. The crystals are monoclinic, space group $P2_1/c$, a = 12.80, b = 22.03, c = 9.44 Å $\beta = 103.2^\circ$, Z = 4. For the 2298 independent non-zero reflexions measured on a Pailred automatic diffractometer, with $F_o^2/\sigma(F_o^2) \ge 3.0$, R =0.055. The corresponding e.s.d's for the more important bond-lengths shown in the Figure are: 0.002, Pd-Sn; 0.005, Pd-P; 0.02, Pd-C; 0.006, Sn-Cl; 0.02, P-C; 0.03 Å, C-C.

The molecules consists of a palladium atom, bonded to an $SnCl_3$ -ligand, a triphenylphosphine ligand, and an allyl group in an approximately

1656

planar manner. This is the first reported structure of a derivative containing a palladium-tin bond. The atoms C(1) and C(3) are +0.01 Å and -0.01 Å respectively from the palladium coordination plane (as defined by Pd, Sn, and P), while the central atom of the allyl group, C(2), is -0.62 Å from this plane: Sn-Pd-P, 99°; Sn-Pd-C(1), 90°; Sn-Pd- $\tilde{C}(3)$, 157°; P-Pd-C(3), 104°; P-Pd-C(1), 171°; C(1)-Pd-C(3), 67°. The average Sn-Cl distance is 2.38 Å while the mean bondangles Cl-Sn-Cl and Pd-Sn-Cl are 95° and 121° respectively. The mean P-C bond distance is 1.82 Å, compared with 1.81 Å found in $(\pi$ -C₄H₇)-Pd(PPh_)Cl.8

The Pd-Sn distance is 2.56 Å; this is considerably shorter than the distance of 2.80 Å reported for Pt-Sn in $[(C_8H_{12})Pt_3(SnCl_3)_3]$,⁹ in which the tin atom is in an octahedral environment, being surrounded by three platinum and three chlorine atoms. The Pd-Sn distance does, however, correspond to the Pt-Sn distance of 2.54 Å reported for the complex [Ph₃PMe]₃Pt(SnCl₃)₅,¹⁰ in which the tin is four-co-ordinate. The observed metal-metal bond-length is approximately 0.1 Å less than the sum of covalent radii.

The allyl group is symmetrically bonded to the palladium atom, the Pd--C(terminal) distances being equal within 1.5σ ; the dihedral angle between the allyl plane and that containing the palladium, tin, and phosphorus atoms is 110°. The Pd-C(terminal) distances are significantly longer (2.19 Å cf., 2.12 Å) than those observed for $[(\pi - C_3H_5)PdCl]_2$.¹¹ The equality of the Pd-C(1) and Pd-C(3) bond lengths suggests that the transdirecting influence of the SnCl₃- ligand and the triphenylphosphine group are comparable, in accordance with a previous report,⁶ which suggests, on the basis of spectroscopic evidence, that the trans-directing influence of the SnCl₃- ligand lies between the thiocyanate ion and the cyanide ion.

We thank the S.R.C. for financial support of these studies.

(Received, October 30th, 1968; Com. 1485.)

- ¹ M. van den Akker and F. Jellinek, J. Organometallic Chem., 1967, 10, P37.
- ² J. Powell, S. D. Robinson, and B. L. Shaw, Chem. Comm., 1965, 78.
- ³ K. Vrieze, C. Maclean, P. Cossee, and C. W. Hilbers, Rec. Trav. chim., 1966, 85, 1077.
- ⁴ K. C. Ramey and G. L. Stratton, J. Amer. Chem. Soc., 1966, 88, 4387.
 ⁵ F. A. Cotton, J. W. Faller, and A. Musco, Inorg. Chem., 1967, 6, 179.
- ⁶ R. V. Lindsey, G. W. Parshall, and U. G. Stolberg, J. Amer. Chem. Soc., 1965, 87, 658. ⁷ D. M. Adams and P. J. Chandler, Chem. and Ind., 1965, 269.
- ⁸ R. Mason and D. R. Russell, Chem. Comm., 1966, 26.
- ⁹L. J. Guggenberger, Chem. Comm., 1968, 512.
- ¹⁰ R. D. Cramer, R. V. Lindsey, C. T. Prewitt and U. G. Stolberg, J. Amer. Chem. Soc., 1965, 87, 658.
- ¹¹ A. E. Smith, Acta Cryst., 1965, 18, 331.