Photochemical Addition of Amines to Conjugated Olefins

By R. C. COOKSON,* J. HUDEC, and N. A. MIRZA

(Chemistry Department, Southampton University, Southampton, SO9 5NH)

TERTIARY AMINES add to conjugated olefins in a reaction, related to the photochemical α -alkylation of amines by benzoic esters, that was recently reported.¹ For example, irradiation of the following $\alpha\beta$ -unsaturated esters in triethylamine with a 500w medium pressure mercury arc through silica gave the adducts shown: methyl acrylate (Ia),

methyl crotonate (IIa), methyl $\beta\beta$ -dimethylacrylate (IIIa), methyl fumarate (IVa), and methyl geranate (Va). $\alpha\beta$ -Unsaturated ketones reacted in the same way: 4-methylpent-3-enone (VIa + VIIa), acetylcyclohexene (VIIIa), carvone (IXa), pulegone (Xa), and 17 β -hydroxyandrost-4-en-3-one (XIa). Activation of the $n \rightarrow \pi^*$ transitions of the ketones by use of a Pyrex filter led to the same adducts in the same yields, but more slowly.

The structures of the adducts were established mainly by spectroscopic methods. Reduction of the amino-ester (IIa) with lithium aluminium hydride and dehydration of the resulting alcohol with alumina in pyridine² at 175—180° produced the unsaturated amine (XIIa) that had already been made by irradiation of crotyl benzoate in triethylamine.¹ The adducts (IIa, IVa, Va, VIIIa, IXa, Xa, and XIa) were formed as mixtures of stereoisomers. An important competing reaction was reduction of the conjugated double bond: the yields of the amine adducts and of the $\alpha\beta$ dihydro-compounds are shown in the Table.

TABLE

Percentage yields

		a	b		a	b
(I)	••	16	9	(VII)	6.0	-
ÌÍ)		30	10	(VIIÍ)	28	15
ÌII)		16	13	(IX)	33	23
(IV)	••	36	12	(X)	44	11
(V)	••	6.6	25	(XI)	39	14
(VI)	••	25	14			

(Received, December 7th, 1967; Com. 1310.)

¹ R. C. Cookson, J. Hudec, and N. A. Mirza, Chem. Comm., 1967, 824. ² Cf. E. Von Rudloff, Canad. J. Chem., 1961, **39**, 1860.