The Stereochemistry of 6-Bromo-7-oxoditerpenoids

By R. C. Cambie,* G. R. Clark, D. R. Crump, and T. N. Waters
(Department of Chemistry, University of Auckland, New Zealand)

On the basis of n.m.r. measurements Wheeler and his co-workers ${ }^{1}$ have suggested that the bromide of methyl 6-bromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-16-oate (Ib) has a β-configuration rather than the α-configuration assigned by Wenkert, ${ }^{2}$ Cambie, ${ }^{3}$ and their co-workers. Since Wheeler's arguments appeared to apply equally
well for an α-configuration we have determined the structure of (Ib) by X-ray methods in order to obtain an unequivocal solution.

The crystals were orthorhombic with $a=10 \cdot 85$, $b=11 \cdot 16, c=15.05 \AA$ and space group $P 2_{1} 2_{1} 2_{1}$. Three-dimensional intensity data were collected with $\mathrm{Cu}-K_{\alpha}$ radiation and the structure was solved
by Patterson and heavy-atom syntheses, the R factor being reduced to 8.8% by least-squares refinements. The analysis confirms that the bromine is α and shows that the conformation of ring-B is nearly a classical boat (see Figure). \dagger The distances of bromine to the carbonyl $O, C(15)$, $C(5)$, and $C(7)$ atoms are $3.25,3 \cdot 43,2 \cdot 91$, and $2.70 \AA$ respectively, while the carbonyl O is $0.61 \AA$ above, and the $\operatorname{Br} 1.68 \AA$ below the plane of the
shielding by the $C(7)$-carbonyl group alone. For example, conversion of totaryl methyl ether (III) to (IIIa) causes the C(17)-methyl to be shielded by 0.11 p.p.m. while subsequent introduction of a $\mathrm{C}(6)$-bromine atom causes a further deshielding of 0.13 p.p.m. rather than shielding. If the bromine here possessed a β-configuration [i.e. (IIIc)] a marked deshielding of both the $C(17)$ - and $C(16)$ methyl groups would be expected as is shown below.

Table
N.m.r. data (δ) for methyl groups of diterpenoids

	$\mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{\mathbf{2}}=\mathrm{R}^{8}=\mathrm{H}$				$\mathrm{R}^{\mathbf{1}}=\mathrm{O}, \mathrm{R}^{\mathbf{2}}=\mathrm{R}^{\mathbf{d}}=\mathrm{H}$				$\mathbf{R}^{\mathbf{1}}=\mathrm{O}, \mathrm{R}^{\mathbf{2}}=\mathrm{Br}, \mathrm{R}^{\mathbf{3}}=\mathrm{H}$				$\mathrm{R}^{\mathbf{1}}=\mathrm{O}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}, \mathrm{R}^{8}=\mathrm{Br}$		
	$\mathrm{C}(15)$	C(16)	$\mathrm{C}(17)$		(C15)	$\mathrm{C}(16)$	(C17)		$\mathrm{C}(15)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$		$\mathrm{C}(15)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$
(I)	1.27	-	1.03	(Ia)	1.25	-	$1 \cdot 10$	(Ib)	1.53	-	0.85	(Ic)	-	-	-
(II)	0.94	0.94	$1 \cdot 19$	(IIa)	0.93	1.00	1.25	(IIb)	$1 \cdot 15$	1.03	1.27	(IIc)	$1 \cdot 10$	$1 \cdot 43$	1.77
(III)	0.95	0.95	1.21	(IIIa)	0.91	1.01	$1 \cdot 10$	(IIIb)	$1 \cdot 15$	1.08	1.23	(IIIc)	-	-	-
(IV)	-	1.25	1.20	(IVa)	-	1.33	1.26	(IVb)		1.50	1.26	(IVc)	-	-	-

aromatic ring. The dihedral angle $\mathrm{H}_{\alpha}(\mathrm{C} 5)-\mathrm{C}(6) \mathrm{H}_{\beta}$ is $154 \pm 8^{\circ}$ in agreement with the observed coupling constant of $J=7 \mathrm{c} . / \mathrm{sec}$. from the n.m.r. spectrum. Comparison of (Ib) with (Ia) (see Table) shows that the C(15)-methyl of (Ib) is deshielded by 0.28 p.p.m., an amount comparable to that induced by a 1,3-diaxial interaction in a steroid. ${ }^{4}$ Oxidation of (I) to (Ia) causes a deshielding of the $\mathrm{C}(17)$-methyl group but introduction of a $\mathrm{C}(6)$-bromine (Ib) then causes a shielding with respect to (Ia). This can be interpreted as a change in conformation of ring-B from a half-boat (Ia) to a boat, the C(17)-methyl of (Ib) thus entering the cone of shielding of the carbonyl group. However, such first-order approximations do not correlate with the chemical shifts observed for related diterpenoids [e.g. (II), (III), and (IV)], and thus the shift of the $C(17)$-methyl group cannot be satisfactorily interpreted in terms of the expected

Figure

(I)

Re-investigation of the bromination of sugiyl methyl ether (II) which earlier gave a 6β-bromoderivative, ${ }^{3}$ has now afforded two epimers, m.p.'s 199° and 156°, which have been assigned the 6β -bromo- and 6α-bromo-structures, (IIb) and (IIc), respectively. Whereas the $\mathrm{C}(16)$ - and $\mathrm{C}(17)$-methyl groups of the β-epimer are deshielded by 0.43 and 0.03 p.p.m. those of the 6α-isomer are only deshielded by 0.10 and 0.03 p.p.m. Moreover the $\mathrm{C}(15)$-methyl group of (IIc) shows a marked deshielding (0.22 p.p.m.) as would be expected for a 6α-bromo-configuration. Dreiding models of the 6β-isomer (IIb) give an $\mathrm{H}_{\alpha} \mathrm{C}(5)-\mathrm{C}(6) \mathrm{H}_{\alpha}$ dihedral angle of $c a .60^{\circ}$ for a ring-в half-boat conformation in agreement with a coupling constant of $3 \mathrm{c} . / \mathrm{sec}$. A model of the 6α-isomer (IIc) with a ring-B boat conformation gives a didedral angle of $c a .130^{\circ}$ in agreement with the observed coupling constant of $8.5 \mathrm{c} . / \mathrm{sec}$.
\dagger Full details of this analysis will be published elsewhere.

Thus configuration of $\mathrm{C}(6)$-bromo-derivatives of 7-oxoditerpenoids is best assigned by a consideration of the deshielding effects of the bromine atom. Bromination of methyl 7-oxoabieta-8,11,13-trien15 -oate (IV) produces no shift in the C(17)-methyl resonance but the $C(16)$-methyl is deshielded by 0.17 p.p.m., and hence a 6α-bromo-configuration can be assigned here. A coupling constant of
$12.5 \mathrm{c} . / \mathrm{sec}$. indicates a dihedral angle $\mathrm{H}_{\alpha} \mathrm{C}(5)^{-}$ $\mathrm{C}(6) \mathrm{H}_{\beta}$ of about 150°, a result consistent with a ring- B boat conformation. This conformation would be similar to that of (IIc) but with the C(6)bromine twisted slightly upwards to increase the dihedral angle as a result of interaction with the $\mathrm{C}(15)$-carboxymethyl group.
(Received, December 28th, 1967; Com. 1379).
${ }^{1}$ A. E. Lickei, A. C. Rieke, and D. M. S. Wheeler, J. Org. Chem., 1967, 32, 1647.
${ }^{2}$ E. Wenkert, P. Boak, R. W. J. Carney, J. W. Chamberlin, D. B. R. Johnston, C. D. Both, and A. Tahara, Canad. J. Chem., 1963, 41, 1924.
${ }^{3}$ A. K. Bose, M. S. Manhas, and R. C. Cambie, J. Org. Chem., 1965, 30, 501.
${ }^{4}$ N. S. Bhacca and D. H. Williams, "Applications of N.M.R. Spectroscopy in Organic Chemistry," Holden Day, San Francisco, 1964, pp. 19-21.

