The Stereochemistry of 6-Bromo-7-oxoditerpenoids

By R. C. CAMBIE,* G. R. CLARK, D. R. CRUMP, and T. N. WATERS (Department of Chemistry, University of Auckland, New Zealand)

On the basis of n.m.r. measurements Wheeler and his co-workers¹ have suggested that the bromide of methyl 6-bromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-16-oate (Ib) has a β -configuration rather than the α -configuration assigned by Wenkert,² Cambie,³ and their co-workers. Since Wheeler's arguments appeared to apply equally well for an α -configuration we have determined the structure of (Ib) by X-ray methods in order to obtain an unequivocal solution.

The crystals were orthorhombic with a = 10.85, b = 11.16, c = 15.05 Å and space group $P2_12_12_1$. Three-dimensional intensity data were collected with Cu- K_{α} radiation and the structure was solved by Patterson and heavy-atom syntheses, the *R*-factor being reduced to 8.8% by least-squares refinements. The analysis confirms that the bromine is α and shows that the conformation of ring-B is nearly a classical boat (see Figure).[†] The distances of bromine to the carbonyl O, C(15), C(5), and C(7) atoms are 3.25, 3.43, 2.91, and 2.70 Å respectively, while the carbonyl O is 0.61 Å above, and the Br 1.68 Å below the plane of the

shielding by the C(7)-carbonyl group alone. For example, conversion of totaryl methyl ether (III) to (IIIa) causes the C(17)-methyl to be shielded by 0.11 p.p.m. while subsequent introduction of a C(6)-bromine atom causes a further deshielding of 0.13 p.p.m. rather than shielding. If the bromine here possessed a β -configuration [*i.e.* (IIIc)] a marked deshielding of both the C(17)- and C(16)methyl groups would be expected as is shown below.

Table

N.m.r. a	lata (δ)	for	methvl	groubs	of	diterbe	noids
----------	----------	-----	--------	--------	----	---------	-------

	$R^1 = H_2, R^2 = R^3 = H$			$R^1 = O, R^2 = R^3 = H$			$R^1 = O, R^2 = Br, R^3 = H$				$R^1 = O, R^2 = H, R^3 = B_1$				
	C(15)	C(16)	C(17)		(C15)	C(16)	(C17)		C(15)	C(16)	C(17)		C(15)	C(16)	C(17)
(I)	1.27		1.03	(Ia)	1.25		1.10	(Ib)	1.53		0.85	(Ic)			
(II)	0.94	0.94	1.19	(IIa)	0·9 3	1.00	1.25	(ÌIb́)	1.15	1.03	1.27	(IIc)	1.10	1.43	1.77
(III)	0.95	0.95	1.21	(ÌIIa)	0.91	1.01	1.10	(ÌIIb)	1.15	1.08	1.23	(ÌIIc)			
(IV)		1.25	1·20	(IVa)	-	1.33	1.26	(IVb)		1.50	1.26	(IVc)			—

aromatic ring. The dihedral angle $H_{\alpha}(C5)-C(6)H_{\beta}$ is $154 \pm 8^{\circ}$ in agreement with the observed coupling constant of J = 7 c./sec. from the n.m.r. spectrum. Comparison of (Ib) with (Ia) (see Table) shows that the C(15)-methyl of (Ib) is deshielded by 0.28 p.p.m., an amount comparable to that induced by a 1,3-diaxial interaction in a steroid.⁴ Oxidation of (I) to (Ia) causes a deshielding of the C(17)-methyl group but introduction of a C(6)-bromine (Ib) then causes a shielding with respect to (Ia). This can be interpreted as a change in conformation of ring-B from a half-boat (Ia) to a boat, the C(17)-methyl of (Ib) thus entering the cone of shielding of the carbonyl group. However, such first-order approximations do not correlate with the chemical shifts observed for related diterpenoids [e.g. (II), (III), and (IV)], and thus the shift of the C(17)-methyl group cannot be satisfactorily interpreted in terms of the expected

† Full details of this analysis will be published elsewhere.

Re-investigation of the bromination of sugivl methyl ether (II) which earlier gave a 6β -bromoderivative,³ has now afforded two epimers, m.p.'s 199° and 156°, which have been assigned the 6β bromo- and 6α -bromo-structures, (IIb) and (IIc), respectively. Whereas the C(16)- and C(17)-methyl groups of the β -epimer are deshielded by 0.43 and 0.03 p.p.m. those of the 6α -isomer are only deshielded by 0.10 and 0.03 p.p.m. Moreover the C(15)-methyl group of (IIc) shows a marked deshielding (0.22 p.p.m.) as would be expected for a 6α-bromo-configuration. Dreiding models of the 6β -isomer (IIb) give an $H_{\alpha}C(5)-C(6)H_{\alpha}$ dihedral angle of ca. 60° for a ring-B half-boat conformation in agreement with a coupling constant of 3 c./sec. A model of the 6α -isomer (IIc) with a ring-B boat conformation gives a didedral angle of ca. 130° in agreement with the observed coupling constant of 8.5 c./sec.

CHEMICAL COMMUNICATIONS, 1968

Thus configuration of C(6)-bromo-derivatives of 7-oxoditerpenoids is best assigned by a consideration of the deshielding effects of the bromine atom. Bromination of methyl 7-oxoabieta-8,11,13-trien-15-oate (IV) produces no shift in the C(17)-methyl resonance but the C(16)-methyl is deshielded by 0.17 p.p.m., and hence a 6a-bromo-configuration can be assigned here. A coupling constant of

12.5 c./sec. indicates a dihedral angle $H_{\alpha}C(5)^{-}$ $C(6)H_{\beta}$ of about 150°, a result consistent with a ring-B boat conformation. This conformation would be similar to that of (IIc) but with the C(6)bromine twisted slightly upwards to increase the dihedral angle as a result of interaction with the C(15)-carboxymethyl group.

(Received, December 28th, 1967; Com. 1379).

¹ A. E. Lickei, A. C. Rieke, and D. M. S. Wheeler, *J. Org. Chem.*, 1967, **32**, 1647. ² E. Wenkert, P. Boak, R. W. J. Carney, J. W. Chamberlin, D. B. R. Johnston, C. D. Both, and A. Tahara, *Canad. J.* Chem., 1963, 41, 1924.

^a A. K. Bose, M. S. Manhas, and R. C. Cambie, J. Org. Chem., 1965, 30, 501.
^a N. S. Bhacca and D. H. Williams, "Applications of N.M.R. Spectroscopy in Organic Chemistry," Holden Day, San Francisco, 1964, pp. 19–21.