Elaeocarpidine, a New Indole Alkaloid from *Elaeocarpus archboldianus* A.C.Sm.

By S. R. Johns, J. A. Lamberton, and A. A. Sioumis

(Division of Applied Chemistry, C.S.I.R.O., Chemical Research Laboratories, Box 4331 G.P.O., Melbourne, Australia)

ELAEOCARPIDINE, m.p. 229—230° $[\alpha]_D \pm 0^\circ$ in CHCl₃, the major alkaloid isolated from the leaves of *Elaeocarpus archboldianus* A.C.Sm. and the first indole alkaloid of the family Elaeocarpaceae, has been shown to be (I). Elemental analysis and an M^+ peak at m/e 267 indicated the molecular formula $C_{17}H_{21}N_3$, and (I) was characterized spectroscopically as an indole $[\lambda_{max}$ (EtOH) 226 mμ (ϵ 39,800), 283 (8,000), λ inflect., 290 (6,750); ν_{max} (CHCl₃) 3510 cm.⁻¹ and broad NH singlet at δ 7.68 in the 60 Mc./sec. n.m.r. spectrum*

from proton exchangeable with D_2O] unsubstituted in ring a (four-proton multiplet between 415—455 c./sec.), with only one exchangeable proton (M^+ 268 after D_2O exchange). Strong Bohlmann bands between 2500—2800 cm.⁻¹ in the i.r. spectrum are consistent with the structure assigned.

Chemical proof of the structure of elaeocarpidine depends upon the formation of 1-ethyl- β -carboline on selenium dehydrogenation and on a study of dihydroelaeocarpidine (IIa). The labile nature of the N-CH-N system of (I) is shown by the formation on catalytic hydrogenation in glacial acetic acid solution of dihydroelaeocarpidine (IIa). Dihydroelaeocarpidine, m.p. 123—125, M^+ 269, has two exchangeable protons (M^+ 271 after D₂O exchange) and in pyridine-acetic anhydride solution, affords an N-acetyl derivative (IIb) [v_{max} (CHCl₃) 1635 cm.⁻¹; three-proton singlet at $\delta 2.18$]. The structure of (IIb) was established by Hofmann degradation (aqueous NaOH at 180°) of the methiodide of (IIb), which afforded N-methylpyrrolidine as the only volatile, basic product.

(Received, February 14th, 1968; Com. 180.)

^{*} N.m.r. spectra were measured in CDCl₃ solution on a Varian A60 spectrometer and chemical shifts are relative to tetramethylsilane.