The Gas-phase Structure of Xenon Hexafluoride

By W. K. GLASS

(Department of Chemistry, University College, Belfield, Dublin 4)

THE recent publication¹ of the Raman spectra of xenon hexafluoride vapour has prompted the following analysis of the i.r. and Raman vapour spectra of XeF_6 on the basis of a model possessing O_h symmetry.

The occurrence of three lines in the Raman spectrum is in accord with this model of an octahedrally co-ordinated xenon atom.

Using a Urey-Bradley type² potential function, a secular equation $|GF - E\lambda| = 0$ was set up with the aid of Wilson's method.³ The values of G and F elements were obtained from Nakawaga and Shimanouchi.² K, H, and F represent the force constants (in mdynes/Å) for bond stretching, angle deformation, and interaction between nonbonded atoms, respectively.

The Raman bands at 609, 520, and 206 cm.-1 were assigned to v_1 , v_2 , and v_5 , respectively. Both $v_1(A_{1g})$ and $v_2(E_g)$ are Raman-active Xe-F stretching modes; $\nu_5(F_{2g})$ is a Raman-active F-Xe-F deformation mode.

On this basis, K, H, and F were calculated to be 2.788, -0.069, and 0.341 mdynes/Å, respectively. Using these force constants, ν_3 , ν_4 , and ν_6 were calculated to be 607, 158, and 146 cm.-1 respectively. Both $v_3(F_{1u})$ and $v_4(F_{1u})$ are i.r.-active Xe-F stretching and F-Xe-F deformation modes respectively; $v_6(F_{2u})$ is an inactive F-Xe-F bending mode. This is substantiated by a calculation of the potential-energy distribution in v_3 and v_4 .

The i.r. vapour spectrum obtained between 1400 and 400 cm.⁻¹ by D. F. Smith⁴ shows bands at 1220, 1102, 612, and 520 cm.⁻¹. These may now be positively assigned to $(\nu_1 + \nu_3)$; $(\nu_2 + \nu_3)$; ν_3 and $(2\nu_5+\nu_6)$ respectively. Bands at 1189 and 1154 cm.-1 reported by Weaver et al.5 are not apparent in the spectral measurements of Smith.⁴

Both $(v_1 + v_3)$ and $(v_2 + v_3)$ are abnormally broad, with about equal intensities. It is of interest that these combination tones occur as fairly narrow bands with similar intensity in various hexafluorides. A broadening of $(\nu_2 + \nu_3)$ observed in OsF_6 and ReF_6 is attributable to the Jahn-Teller effect.⁶ The band at 520 cm.⁻¹ is very weak compared to that at 612 cm.⁻¹ and cannot be ascribed to v_3 . The value, v_4 , could not be observed experimentally because it lies below the lower wavenumber limit investigated. The frequencies of v_1 and v_3 are almost the same, as in MoF₆.

In the liquid and solid phases, the XeF_6 Raman spectra exhibit many more bands than above. This is due presumably to a lowering of octahedral symmetry by aggregation in a condensed phase.

The bond-stretching force constant obtained for XeF_6 is similar to that of UF₆ (where K, H, F are 2.780, -0.190, 0.554 mdynes/Å, respectively), the bond lengths being ca. 2 Å in each case.

The excellent agreement of v_3 (calculated) with v_{3} (observed), together with the characteristic Raman spectrum, suggest that the ground-state vapour molecules of XeF_6 possess O_h symmetry, but have unusual electronic properties which markedly influence band-widths.

(Received, March 6th, 1968; Com. 277.)

- ² T. Shimanouchi and I. Nakagawa, Spectrochim. Acta, 1962, 18, 89.
 ³ E. B. Wilson, jun., J. C. Decius, and P. C. Cross, "Molecular Vibrations", McGraw Hill, New York, 1955.
 ⁴ D. F. Smith, "Noble-Gas Compounds", ed., H. H. Hyman, University of Chicago Press, Chicago, 1963, p. 300. ⁵ E. E. Weaver, B. Weinstock, and C. P. Knop, *J. Amer. Chem. Soc.*, 1963, 85, 111.
- ⁶ B. Weinstock, H. H. Claassen, and J. G. Malm, J. Chem. Phys., 1960, 32, 181.

¹ E. L. Gasner and H. H. Claassen, Inorg. Chem., 1967, 6, 1937.