Crystal Structure of Isobutyroyl Hexachloroantimonate(V), Me₂CH·CO+SbCl₆

By J-M. LE CARPENTIER and R. WEISS*

(Laboratoire de Cristallochimie associé au C.N.R.S., Institut de Chimie de Strasbourg, B.P. 296/R8, 67/Strasbourg, France)

THE EXISTENCE of oxocarbonium ions has been established by i.r. studies in the solid state, and n.m.r. methods in solution.1-3

The geometrical structure of the methyloxocarbonium ion, MeCO+, has been determined by X-ray crystallography, in SbF_{6} , MeCO+4 and SbCl₅, MeCO^{+,5} No other structural determination of oxocarbonium ions has been reported so far.

We now report the crystal structure of SbCl₆, Me₂CH·CO⁺. Some significant bond lengths found are shown in the Figure, their approximate

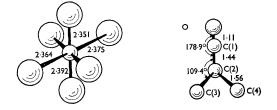


FIGURE. SbCl₆ and Me₂CH·CO+ ions in isobutyroylhexachloroantimoniate(v).

standard deviations being 0.02 for C(1)-C(2) and C(1)-O bonds, 0.03 for the C(2)-Me and 0.006 Å for the Sb--Cl bonds.

The carbon-isopropyl bond in Me₂CH-CO⁺ is

probably slightly weaker than the carbon-methyl bond in Me-CO+. The bond distance Me₂CH-CO+ is 1.44 Å ($\sigma = 0.02$ Å) whereas the methyl-carbon bond Me-CO⁺ is 1.38 Å ($\sigma = 0.02$ Å).^{4,5} The difference of 0.06 Å is however not strictly significant.

The C–O distance of 1.11 Å is close to that of 1.12 Å found in MeCO⁺.4,5

Crystals of Me₂CH·CO+SbCl₆ have been prepared from chloroform solutions of the halides. Crystal data are: M = 421.38, orthorhombic. a = 19.850 (20), b = 7.121 (7), c = 9.194 (9) Å, $U = 1.299 \text{ Å}^3$, Z = 4, $D_0 = 2.11$; Space group Pnma (No. 62).

Intensities of 930 independent non-zero reflexions were recorded on a Pailred diffractometer using Mo- K_{α} radiation. The crystal (0.25 \times 0.25×0.35 mm., very sensitive to moisture, was sealed in a Lindemann capillary tube. No absorption corrections were applied ($\mu = 16.8$ cm.-1).

The structure was derived from the three dimensional Patterson function. The refinement to R = 0.066 was carried out by isotropic full matrix least-squares analysis and difference synthesis.

(Received, April 2nd, 1968; Com. 410.)

¹G. A. Olah, "Friedel-Crafts and Related Reactions" vol. 1, Interscience, New York, 1963, p. 91-95, 665-680, and 790-812.

- ² G. A. Olah, S. J. Kuhn, W. S. Tolgyesi, and E. B. Baker, J. Amer. Chem. Soc., 1962, 84, 2733.
 ³ B. P. Susz and J. Wuhrmann, Helv. Chim. Acta, 1957, 40, 722, 971.

- ⁴ F. P. Boer, J. Amer. Chem. Soc., 1966, 88, 1572.
 ⁵ R. Weiss and J-M. Le Carpentier, Compt. rend., 1967, 265, 797.