π -Interactions in Pentafluorophenylfluorophosphonitriles

By T. CHIVERS and N. L. PADDOCK*

(Department of Chemistry, University of British Columbia, Vancouver 8, B.C., Canada)

In connection with studies of the variation in the properties of phosphonitrilic compounds as a function of ring size, we have prepared a series of pentafluorophenylfluorophosphonitriles of the type $N_x P_x (C_6 F_5) F_{2x-1}$ (x = 3—8), and have obtained their ¹⁹F n.m.r. spectra. The results, given in the Table, can be interpreted by comparison with those of other pentafluorophenyl derivatives.^{1,2}

¹⁹F N.m.r. parameters for pentafluorophenylfluorophosphonitriles

Compound ^{a, c}	δ _p b	δ_m^{b}	$\delta_m - \delta_p$
$N_{3}P_{3}(C_{6}F_{5})F_{5}$	$143 \cdot 8$	$159 \cdot 1$	15.3
$N_{4}P_{4}(C_{6}F_{5})F_{7}$	144.6	159.3	14.7
$N_5P_5(C_6F_5)F_9$	$143 \cdot 3$	159.4	16.1
$N_{e}P_{e}(C_{e}F_{5})F_{11}$	144-4	159.4	15.0
$N_7 P_7 (C_6 F_5) F_{13}$	144-4	159.4	15.0
$N_8P_8(C_6F_5)F_{15}$	144.4	159.4	15.0

 $^{\rm a}$ Measured in 20–40% (v/v) solutions in CCl_3F at 25°. Chemical shifts were found to vary <0.1 p.p.m. over the concentration range 10-50% (v/v).

^b Chemical shifts of *p*-fluorine (δ_p) and *m*-fluorine (δ_m) in p.p.m. relative to CCl₃F.

c J'_{24} (the apparent coupling constant between the *o*-and *p*-fluorine atoms) values in the range 7.3—7.7 c./sec. were observed but could not be determined with great accuracy owing to long-range effects.

The low value of δ_p and large values of $\delta_m - \delta_p$ and J'_{24} indicate strong π -withdrawal from the pentafluorophenyl ring by the phosphonitrilic substituent, in this case a $p\pi$ - $d\pi$ effect. The magnitude of the effect is similar to that exerted by a cyano-group, for which the corresponding quantities are $\delta_p = 143.5$ p.p.m., $\delta_m - \delta_p = 15.7$ p.p.m., $J'_{24} = 5.9$ c./sec. Further, the variability of $\delta_m - \delta_p$, while δ_m remains constant, is suggestive of a resonance effect which is dependent on ring size. The rings in both $N_3P_3F_6$ and $N_4P_4F_8$ are planar,⁴ and it is likely that $N_5P_5F_{10}$ deviates only slightly from planarity, the bigger rings increasingly so.⁵ The primary condition for the application of Hückel theory is therefore satisfied, and we attribute the alternating behaviour of $\delta_m - \delta_p$ up to $N_6P_6F_{12}$ to conjugation of the homomorphic π -system in the pentafluorophenyl group with a homomorphic π -system in the phosphonitrilic ring, already recognized on the grounds of base behaviour and ionisation potentials.⁶ Such conjugation could be effected mainly through the d_{z^2} orbital, the use of which is believed⁷ to account for the inequality in exocyclic bonds found⁸ in the crystal structure of $N_4P_4(NMe_2)_8$, and which, within the ring, interacts symmetrically with $s p_y$ hybrid orbitals on neighbouring nitrogen atoms.

We are grateful to the National Research Council of Canada for a grant.

(Received, April 30th, 1968; Com. 528.)

- ¹ R. D. Chambers and T. Chivers, J. Chem. Soc., 1965, 3933.
 ² M. G. Hogben, R. S. Gay, and W. A. G. Graham, J. Amer. Chem. Soc., 1966, 88, 3457.
 ³ I. J. Lawrenson, J. Chem. Soc., 1965, 1117.
- ⁴ M. W. Dougill, J. Chem. Soc., 1963, 3211; H. McD. McGeachin and F. R. Tromans, J. Chem. Soc., 1961, 4777.
- ⁵ A. C. Chapman and N. L. Paddock, J. Chem. Soc., 1962, 635.
 ⁶ C. E. Brion, D. J. Oldfield, and N. L. Paddock, Chem. Comm., 1966, 226.
 ⁷ N. L. Paddock, Quart. Rev., 1964, 18, 168.
- ⁸ G. J. Bullen, J. Chem. Soc., 1962, 3193.