A Novel Polymerisation involving $\mathbf{C}-\mathrm{H}$ Addition to $\mathrm{C} \equiv \mathrm{C}$ catalysed by $\mathbf{R h C l}\left(\mathbf{P h}_{3} \mathbf{P}\right)_{\mathbf{3}}$

By R. J. Kern
(Monsanto Company, St. Louis, Missouri 63166)

$\mathrm{RhCl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}$ catalyses formation of a poly (phenylacetylene $)^{1}$ differently from those types initiated thermally or with Zeigler-type catalysts (for example, di-isobutylaluminium hydride-ferric acetylacetonate). The product is believed to contain conjugated unsaturation almost entirely trans with respect to the chain. This Communication assembles evidence that under the influence of $\mathrm{RhCl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}$ phenylacetylene behaves as a bifunctional monomer. The triple bond acts as one function, the $\mathrm{C}-\mathrm{H}$ bond is the second. Propagation proceeds by cumulative additions of the $\mathrm{C}-\mathrm{H}$ function of one monomer across the triple bond of another. In contrast, thermal and Zeigler polymerizations are considered to proceed by additions of an active chain-end across successive triple bonds in analogy to vinyl polymerisation of double bonds.
$\mathrm{RhCl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}$ polymerisation proceeds readily at $50-70^{\circ}$ in bulk monomer withoutadded co-catalyst. When the reaction is conducted at $0-20^{\circ}$ with $0.016 \mathrm{~mol} . / \mathrm{l}$. of rhenium for three days a 50% yield of trans-1,4-diphenylbutenyne crystallizes from a syrup of oligamers. Styrene fails to polymerise under the same conditions at either $0-20^{\circ}$ or $50-70^{\circ}$.

The trans-1,4-diphenylbutenyne clearly indicates addition of $\mathrm{PhC} \equiv \mathrm{CH}$ through its $\mathrm{C}-\mathrm{H}$ bond across another acetylenic group. One may infer that the

Rh complex assists in this process. The dissociative additions of $\mathrm{H}_{2}, \mathrm{HCl}$, and MeI to this complex are already known. ${ }^{2}$ Similar addition of $\mathrm{PhC} \equiv \mathrm{CH}$ (as $\mathrm{PhC} \equiv \mathrm{C}$ - and -H) into the Rh co-ordination sphere could be followed by subsequent addition to another phenylacetylene unit π-complexed through its triple bond. Subsequent similar additions to terminal triple bonds will result in chain growth.

The addition polymerisation of alternating diene and dithiol units ${ }^{3}$ represents an analogous system not employing transition-metal catalysis.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}+\mathrm{HS} \cdots \mathrm{SH} \rightarrow \\
& \quad\left[\cdots \mathrm{~S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S} \cdots\right]
\end{aligned}
$$

(Received, April 16th, 1968; Com. 466.)

[^0]
[^0]: ${ }^{1}$ R. J. Kern, Polymer Preprints, Amer. Chem. Soc. Meeting, San Francisco, April, 1968.
 ${ }^{2}$ J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711.
 ${ }^{3}$ C. S. Marvel, Rec. Chem. Prog., 1951, 12, 185.

