Rearrangement of 1,2,3-Triphenylcyclopropene to 1,2-Diphenylindene catalyzed by Di-µ-chlorodichlorobis(ethylene)diplatinum(II)

By JOHN A. WALKER and MILTON ORCHIN*

(Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221)

In an attempt to displace ethylene from $[(C_2H_4)PtCl_2]_2$ by 1,2,3-triphenylcyclopropene (I), we found that the principal product of the reaction was the known 1,2-diphenylindene (II), formed by the rearrangement of (I). The reaction was carried out as follows. A chloroform solution of (I) and the Pt^{II}-complex were mixed and left at room temperature for 0.5 hr; the solution was then chromatographed on neutral alumina and eluted with chloroform. The first material collected was a white solid (II) which crystallized from ethanol (m.p. 178°, lit.¹ 177°) and was identified by its conversion to 2,3-diphenylindene (III), m.p. 108°.¹ The n.m.r. spectra of (II) and (III) were in agreement with the reported spectra.² The second material isolated from the chromatography was an orange solid which crystallized from pentane and decomposed on heating at ca. 150°. It has not yet been characterized, but is believed to be the Pt^{II}-complex which is an intermediate in the rearrangement.

That the reaction is catalytic was shown by combining 0.11 g, of (I) with 0.01 g, of the Pt^{II}dimer (molar ratio of 24:1) in 2 ml. of chloroform, and monitoring the disappearance, due to unchanged (I), of the sharp singlet in the n.m.r. spectrum at τ 6.68. After 13 hr. at room temperature, all of (I) had disappeared while under reflux, (I) disappeared within 1 hr. The formation of (II) was

¹ P. Ruggli, Annalen, 1918, 414, 125.

- ² J. McCullough, Canad. J. Chem., 1968, 46, 43.
 ³ R. Breslow in "Molecular Rearrangements", ed. P. de Mayo, Interscience, New York, 1963, part I, p. 257.
 ⁴ A. Battiste, B. Halton, and R. H. Grubbs, Chem. Comm., 1967, 907.

observed by following an n.m.r. peak which appeared at τ 6.1, and grew at the expense of the τ 6.68 peak. In the absence of the Pt^{II}-complex no conversion occurred.

Although the acid-catalyzed rearrangement³ of (I) to (II) and the thermal rearrangement of arylcyclopropenes to indenes⁴ have been reported, we believe this to be the first such transition-metal catalyzed reaction to be reported.

We thank Englehard Industries, Inc. for a generous supply of platinum and acknowledge a NASA Traineeship to J.A.W.

(Received, July 5th, 1968; Com. 901.)