Correlation between Phosphorus-Tungsten Coupling Constants and Carbonyl Stretching Frequencies in Phosphorus-ligand Derivatives of Tungsten Hexacarbonyl

By SAMUEL O. GRIM,* PATRICK R. MCALLISTER, and ROGER M. SINGER (Department of Chemistry, University of Maryland, College Park, Maryland 20742)

We reported earlier that there is a correlation between the most intense (E mode) carbonyl stretching frequencies in tertiary phosphine-tungsten pentacarbonyl compounds and the tungsten-183-phosphorus-31 nuclear spin-spin coupling constants in the compounds.¹ All the ligands were tertiary phosphines: hence, J_{W-P} varied by only 80 Hz while the CO stretching frequencies (E mode) had a range of only 8 cm.⁻¹.

We have extended the study over a significantly larger range of J_{W-P} (211 Hz) and v_{CO} (25 cm.⁻¹) by including tertiary phosphites, mixed phenylalkoxyphosphines, and tris(dialkylamino)phosphines as ligands. The results are given in the Table and the data are plotted in the Figure. The least-squares line for all the points is shown by the solid line: $v_{\rm E}$ (cm.⁻¹) = 1918 + 0.087 J (Hz), with a standard deviation (σ) of 3.7 cm.⁻¹. The correlation of all the data collectively is not as good (correlation coefficient, r = 0.86) as that of the data for the individual classes of ligands. For example, the tertiary phosphines give r =0.97 and $\sigma = 0.6$ cm.⁻¹, whereas the phosphites have r = 0.98 and $\sigma = 1.2$ cm.⁻¹. The qualitative relationship is, however, clear. Thus, the less basic ligands of phosphorus (the poorer σ -donors and better π -acceptors) have the larger phosphorus-tungsten coupling constants. Since the use of carbonyl stretching frequencies for determining the π -acceptor ability of ligands has been under attack recently,² the fact that there is a correlation between v_{CO} and J_{W-P} does not prove that J_{W-P} is a measure of π -acceptor ability. One would expect the best σ -donors to have the largest coupling constants, because it is generally supposed that the coupling mechanism is transmitted through σ -bonds with s-electronic character.³ The experimental results indicate the opposite. Until theoretical developments show otherwise, we conclude that the σ -bond is strengthened by a synergic π -interaction and/or

The carbonyl stretching frequency (E mode) and phosphorustungsten coupling constant in LW(CO),

	Ligand		E (cm1)	$J_{\mathrm{W-P}}$ (Hz)	
1	(PhO) ₃ P	• •	1959	411	
2	(MeO) ₃ P		1953	398	
3	(EtO) ₃ P	••	1949	391	
4	(BunO) ₃ P	• •	1947	390	
5	(PriO) ₃ P		1944	378	
6	(MeO) ₂ PhP		1950	323	
7	$(Me_2N)_3P$	• •	1950	297	
8	$(Et_2N)_3P$		1948	296	
9	MeŌ·Ph ₂ P		1945	280	
10	Ph ₃ P	• •	1942	280	
11	MePh ₂ P	••	1939	245	
12	$EtPh_2P$	• •	1938	240	
13	Ph_2Pr^iP		1937	240	
14	Ph ₂ Bu ⁿ P		1938	250	
l5	Ph ₂ Bu ^t P		1937	240	
16	PhBu ₂ ⁿ P	• •	1937	235	
17	Bu₃n₽		1934	200	

there is coupling transmitted via π -bonds or another mechanism.

FIGURE. Correlation of v_{CO} (E mode) and J_{W-P} for LW(CO)₅ compounds (-– —, phosphites;– --, all compounds; ----phosphines). The numbers correspond to the compounds in the Table

It seems (Figure) that J_{W-P} is a better measure of π -acceptor ability (or inversely as σ -donor ability) than v_{CO} . In particular, J_{W-P} increases as follows: R_3P <RPh₂P < Ph₃P \sim (RO)Ph₂P < (R₂N)₃P < (RO)₂PhP < $(RO)_{3}P < (PhO)_{3}P$, which appears to be a quite reasonable order based on inductive effects of the substituents on phosphorus. However, the order of increasing v_{CO} is not the same. Indeed, the amino-phosphines and dimethoxyphenylphosphine are included in the span of phosphites, which is not expected.

We thank the U.S. Air Force Office of Scientific Research for support of this work and NASA for a traineeship (to P.R.M.).

(Received, October 29th, 1968; Com. 1474.)

¹S. O. Grim, D. A. Wheatland, and W. McFarlane, J. Amer. Chem. Soc., 1967, 89, 5573.

² S. O. Grin, D. A. Wheatand, and W. McFatane, J. Amer. Chem. 300, 1307, 657, 6575.
² M. Bigorgne, J. Inorg. Nuclear Chem., 1964, 26, 107.
³ R. J. Angelici and M. D. Malone, Inorg. Chem., 1967, 6, 1731.
⁴ D. J. Darensbourg and T. L. Brown, Inorg. Chem., 1968, 7, 959.
⁵ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy", Pergamon Press, Oxford, 1965, vol. 1, ch. 5.