Spin-Lattice Relaxation Times by Progressive Saturation. Application to an AB Spin System

By E. G. FINER and R. K. HARRIS*

(School of Chemical Sciences, University of East Anglia, Norwich NOR 88C)

MANY n.m.r. techniques have been devised for the measurement of spin-lattice relaxation times T_1 . These may be divided into two main classes: those using conventional high-resolution n.m.r. spectrometers, and those based on pulse methods, such as spin-echo experiments. Both these techniques have their disadvantages; the former in that auxiliary equipment such as a fast-response recorder is required, and the latter in that normally only an overall T_1 is obtained for all the transitions of a given nuclear species. We report a new method of measuring T_1 , using a highresolution spectrometer with no ancillary equipment, and giving individual relaxation times for each transition.

It has been shown¹ that, even for a complex second-order spin system, thermal relaxation between any pair of energy levels i and j (in the absence of degeneracies) occurs according to the equation:—

$$\Delta n_{ij} = \Delta n_{ij}^0 / (1 + 2P_{ij}T_1^{ij}), \qquad (1)$$

where Δn and Δn^0 are the equilibrium population differences in the presence and absence (respectively) of the radiofrequency field H_1 , P is the H_1 -induced transition probability, and T_1^{ij} is a relaxation time specific to the transition ij. This time depends in a complex way on all the relaxation probabilities of the spin system, since restoration of the equilibrium population difference between levels i and j can be effected via many routes round the energy-level system

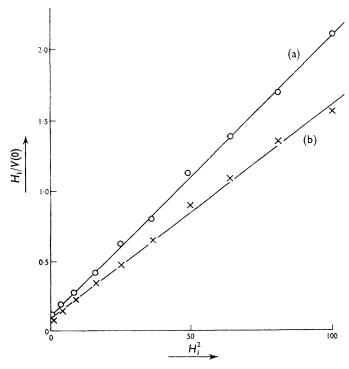


FIGURE. Least-squares lines and experimental points for the plots of $H_1/V(O)$ against H_1^2 for the low-field (a) outer and (b) inner lines of the AB proton spectrum of 2,3-dibromothiophen.

in addition to the direct relaxation between i and j. Measurement of the different T_1^{ij} for various transitions in the system thus gives information about relaxation mechanisms.

Our method of measuring values of T_1^{ij} requires only that the absorption envelopes of the individual transitions ij do not show appreciable overlap. The method is based on the expression for the e.m.f., V, giving rise to the measured signal on the spectrometer recorder²:

$$V_{ij} \propto \gamma H_0 \cdot n_{ij} \cdot P_{ij} / H_1 \tag{2}$$

The transition probability P_{ij} is given by

$$P_{ij} = \gamma^2 H_1^2 g(\mathbf{v}) Q_{ij} / 4, \tag{3}$$

where $g(\mathbf{v})$ is the line-shape function (usually Lorentzian, although its exact form is irrelevant to this discussion), and Q_{ij} is the square of the matrix element of I_+ (the shift operator) between *i* and *j*. Since Δn^0 is almost exactly the same for all transitions of a given type of nucleus, equations (1), (2), and (3) show that at constant H_0 and γ ,

$$V_{ij} \propto H_1 g(\mathbf{v}) Q_{ij} / [1 + \gamma^2 H_1^2 g(\mathbf{v}) Q_{ij} T_1^{ij} / 2].$$
(4)

Now peak-heights are given by V when v = 0[V(0)]; with this substitution, equation (4) may be rearranged to give

$$H_1/V_{ij}(0) = \gamma^2 H_1^2 T_1^{ij}/2B + 1/BQ_{ij}g(0), \tag{5}$$

where B is a constant containing instrumental factors and is proportional to the number of nuclei/ml. of sample. Thus by measuring peak heights for increasing values of H_1 (going through saturation of the line) and plotting a graph of $H_1/V_{ij}(0)$ against H_1^2 , a straight line is obtained with slope proportional to T_1 . Absolute values of T_1 may be produced if a calibration of the instrument is carried out with a sample of known T_1 ; thus there is no need to know the absolute value of H_1 —only measurement of a quantity proportional to H_1 is required. Most spectrometers already provide some sort of calibration of their H_1 control, although we found it necessary to recalibrate our control by measuring the voltage produced across the potentiometer of the audiofrequency oscillator which supplies H_1 (by modulation of the 100 MHz centreband) for a Varian Associates HA-100 spectrometer.

We have investigated the relative values of T_1 for the weak outer and stronger inner lines of several AB spectra. The Figure shows the plots obtained for the low-field pair of lines in the proton resonance spectrum of 2,3-dibromothiophen (neat liquid plus a little tetramethylsilane). The ratio $R = T_1$ (outer)/ T_1 (inner) is found to be 1.318; similarly the value R = 1.314 was found from the high-field pair of lines. This ratio depends on the relaxation mechanism for the system. It can be shown that, if intramolecular (AB) dipole-dipole effects provide the only relaxation mechanism, R = 1.285 in this particular case; an identical value for R is obtained if relaxation is by random intermolecular fluctuating magnetic fields which are isotropic, equal, and completely correlated at the two nuclei. The latter case is

held to be unlikely. The observed result is close to R = $1{\cdot}285$ but differs from it by more than the expected error. We suggest that the intramolecular dipole-dipole mechanism is dominant in the case studied, though it is not the only mechanism present. Noggle3 has also studied the relaxation of 2,3-dibromothiophen (but in CS₂ solution) using a saturation-recovery technique; he found if interand intra-molecular dipole-dipole interactions form the only relaxation mechanisms, the results were best fitted if the intramolecular contribution is 55% of the total.

We feel that our novel technique for measuring T_1 is instrumentally simple, accurate and will prove to be applicable to many cases. We believe it to be superior in many cases to the saturation method, which only measures $\sqrt{T_1T_2}$ directly.⁴

(Received, November 8th, 1968; Com. 1524.)

¹ R. M. Lynden-Bell, Progr. NMR Spectroscopy, 1967, 2, 163. ² J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy", Pergamon, Oxford, 1965.

³ J. H. Noggle, J. Chem. Phys., 1965, 43, 3304.
 ⁴ A. L. Van Geet and D. N. Hume, Analyt. Chem., 1965, 37, 979.