By E. CASPI, K. R. VARMA, and J. B. GREIG

(The Worcester Foundation for Experimental Biology, Inc., Shrewsbury, Massachusetts 01545)

In the course of the biosynthetic conversion of lanosterol into cholesterol the C-24 double bond of the former is reduced. The enzyme involved in this reduction is apparently not substrate specific^{1,2} but requires NADPH as a cofactor.² Berseus,³ and Mitropoulos and Myant⁴ have demonstrated that this reduction is stereospecific with regard to the introduction of hydrogen at C-25.

Lanosterol biosynthesized from (4R)- $[4-^3H_1]$ mevalonic acid (MVA) should be labelled at the 3α -, 5α -, 17α -, 20R-, and 24-positions (1).⁵ Further metabolic transformations of this intermediate yield cholesterol (2), which is expected to have tritium at the 17α -, 20R-, and 24ξ -positions.⁵ During this sequence a stereospecific reduction of the C-24 double bond will give rise to an isotopically induced asymmetric centre at C-24. From the configuration at this carbon atom the side of addition of the hydrogen atom to the C-24 double bond can be determined. (³H:¹⁴C ratio 8.48). The cholesterol zone was eluted and twice repurified by t.l.c. on silica gel (twofold development with methanol-benzene, 1:9 v/v). This afforded cholesterol (7.8 mg.; $9.2 \mu c$ of ¹⁴C; ³H:¹⁴C ratio 5.02) which showed a single, symmetrical peak on radiochromatography A sample of this cholesterol was mixed with non-radioactive material and purified *via* the dibromide;¹⁰ after two recrystallizations the cholesterol had a constant ³H:¹⁴C ratio of 4.93.

The biosynthetic [3 H, 14 C]cholesterol (8.0 μ c of 14 C; 6.8 mg.) was suspended in water (6.0 ml.) with Triton X-100 (150 mg.) and added to a suspension of an acetone powder (5.0 g.) of bovine adrenal mitochondria¹¹ in 0.02M-phosphate buffer (233 ml; pH 7.4). After addition of 3 β -hydroxychol-5- enoic acid (11.22 mg.) dissolved in dimethylformamide (1.0 ml.)^{11a} and an NADPH generating system, the mixture was incubated aerobically (37°; 4 hr.). The

*= carbon originating from C-2 of mevalonic acid

The incubation of cholesterol, biosynthesized from (4R)-[4-³H,2-¹⁴C]MVA, with a preparation of adrenal enzymes affords 4-methyl[3-³H,1,5-¹⁴C₂]pentanoic acid (3a), comprising C(22)—C(27) of the side chain.⁵ This acid can be degraded,⁶ without alteration of the stereochemistry of the tritium at C-3 (corresponding to C-24 of cholesterol) to [1-³H,3-¹⁴C]isobutyl alcohol. We have proved that the oxidation of isobutyl alcohol to 2-methylpropanal by yeast alcohol dehydrogenase proceeds with the loss of the 1-*pro-R*-hydrogen.⁶ Consequently, the loss or retention of tritium during such an oxidation of the [1-³H,3-¹⁴C]isobutyl alcohol defines the configuration of the C-24 tritium atom in the original cholesterol.

The dibenzylethylenediamine salt of (4R)- $[4-^{3}H]MVA$ was prepared⁷ and mixed with the corresponding salt of $[2-^{14}C]MVA$, (^{3}H) : (^{14}C) ratio $8\cdot03$). The mixture $(100 \ \mu c$ of (^{14}C) was incubated with the microsomal and soluble enzyme fraction (42 ml.) of a rat-liver homogenate.⁸ After 3 hr. the incubation was terminated and the non-saponifiable lipids were extracted. Squalene and cholesterol were isolated by preparative t.l.c. on silica gel (development with ethyl acetate-hexane, 3:7 v/v). After elution the squalene band was purified by t.l.c. and *via* the thiourea adduct⁹ incubate was then acidified and, after addition of nonradioactive 4-methylpentanoic acid (254 mg.), was steam distilled.12 The distillate (1.51.) was saturated with sodium chloride and continuously extracted with ether for 48 hr. The extract $(5.05 \times 10^5 \text{ d.p.m. of } {}^{14}\text{C})$ was dried and treated with diazomethane. This solution of methyl 4-methylpentanate (3b) was converted into the diphenylalkene (4) (3H:14C ratio 4.31) by reaction with phenylmagnesium bromide and subsequent dehydration. Ozonolysis of (4) yielded 3-methylbutanal (5), ³H:¹⁴C ratio 8.46. Baeyer-Villiger oxidation of this aldehyde (5), and subsequent cleavage of the ester (lithium aluminium hydride), afforded isobutyl alcohol (6), ³H:¹⁴C ratio 7.90. Oxidation of a sample of this [³H,¹⁴C]isobutyl alcohol gave isobutyric acid which was devoid of tritium. As predicted,⁵ biosynthetic cholesterol retains a 4-pro-R-hydrogen of MVA at C-24.

Incubation of the $[1-^{3}H, 3-^{14}C]$ isobutyl alcohol (6) with yeast alcohol dehydrogenase and NAD⁺ yielded 2-methylpropanal (7) which was isolated as its dimedone derivative and found to have a $^{3}H:^{14}C$ ratio of 6.31. A duplicate experiment gave 2-methylpropanal (7) with a $^{3}H:^{14}C$ ratio of 8.26 (Table). Since yeast alcohol dehydrogenase removes

		С	H	EM	11C	AL	. C	OMI	MU	NIC	ATI	ons,	1969
	D 1		~										•.

		ratio	³ H : ¹⁴ C ratio (atomic)			
		(d.p.m.)	Found	Theoretical		
Mevalonic acid		8.03		1:1		
Squalene		8.48	6.34:6	6:6		
Cholesterol (3)	••	4.93	3.07:5	3:5		
4-Methyl-1, l-diphenylp	ent-					
1-ene (4)	• •	4.31	1.07:2	1:2		
3-Methylbutanal (5)		8.46	1.05:1	1:1		
Isobutyl alcohol (6)	• •	7.90	0.92:1	1:1		
2-Methylpropionic acid		0.019	0.002:1	0:1		
2-Methylpropanal (7)		6.31	0.79:1	1:1		
		8.26	1.03:1			

311.140

the 1-pro-R-hydrogen of isobutyl alcohol,6 these results indicate that the [1-3H, 3-14C]isobutyl alcohol has the (1S)-configuration. It follows that in cholesterol biosynthesized from (4R-[4-3H1]MVA the 24-tritium occupies the 24-pro-R-position and the newly introduced hydrogen assumes the 24-pro-S-position. Clearly the enzymatic reduction is stereospecific at C-24, as it is at C-25.^{3,4}

This work was supported by grants from the American Cancer Society, the National Institutes of Health, and the National Science Foundation.

(Received, October 28th, 1968; Com. 1463.)

¹ DeW. S. Goodman, J. Avignan, and D. Steinberg, *J. Biol. Chem.*, 1963, **238**, 1287. ² J. Avignan, DeW. S. Goodman, and D. Steinberg, *J. Biol. Chem.*, 1963, **238**, 1283; J. Avignan and D. Steinberg, *ibid.*, 1961, **236**, 2898.

⁸ O. Berseus, Acta Chem. Scand., 1965, 19, 325.

⁴ K. A. Mitropoulos and N. B. Myant, Biochem. J., 1965, 97, 26C.

⁵ J. W. Cornforth, R. H. Cornforth, C. Donninger, G. Popjak, Y. Shimizu, S. Ichii, E. Forchielli, and E. Caspi, J. Amer. Chem. Soc., 1965, 87, 3224.

⁶ K. R. Varma and E. Caspi, in the press.
⁷ J. W. Cornforth, R. H. Cornforth, C. Donninger, and G. Popjak, *Proc. Roy. Soc.*, 1966, *B*, 163, 492.
⁸ N. L. R. Bucher and K. McGarrahan, *J. Biol. Chem.*, 1956, 222, 1; J. W. Cornforth, R. H. Cornforth, A. Pelter, M. G. Horning, and ¹⁰ L. J. Goad and T. W. Goodwin, Biochem. J., 1966, 99, 735.
 ¹⁰ L. F. Fieser, Org. Synth., 1963, Coll. Vol. 4, 196.
 ¹¹ (a) P. R. Raggatt and M. W. Whitehouse, Biochem. J., 1966, 101, 819; (b) T. Kimura, P. S. Satoh, and T. T. Tchen, Analyt.

Biochem., 1966, 16, 355.

¹² Cf. E. Staple, W. S. Lynn, and S. Gurin, J. Biol. Chem., 1956, 219, 845.