Nitrosation of Thebaine involving Electrophilic Attack at C-7

By K. W. Bentley, G. W. Kirby*, A. P. Price, and Serjinder Singh (Department of Chemistry, University of Technology, Loughborough)

The methoxy-diene system of thebaine (I) is normally attacked by electrophilic reagents at C-14.¹ Thus, bromination gives 14-bromocodeinone and oxidation with peroxyacids gives 14-hydroxycodeinone. We now report that nitrosation of thebaine in the presence of alcohols occurs predominantly at C-7 to give oximes of the type (II). This reaction provides a potential route to morphine derivatives, for example salutaridine,² with a functional group at C-7.

The nitrosation of thebaine in methanol or ethanol was earlier reported³ to give products of composition $C_{20}H_{24}N_2O_5$ and $C_{22}H_{28}N_2O_5$, respectively. Structures were not assigned to these compounds. In our hands, treatment of thebaine hydrochloride in methanol at room temperature with an excess of nitrosyl chloride gave (II; R = Me), m.p. 247°, λ_{max} 234 nm (ϵ 22,100). The ethoxyl analogue (II; R = Et), m.p. 245—247°, λ_{max} 234 nm (ϵ 22,600), was similarly obtained when ethanol was used as solvent. The two products were interconverted by treatment with a solution of hydrogen chloride in the appropriate alcohol. Proof of the structures (II) is illustrated, as follows, for the dimethyl ketal (II; R = Me).

The n.m.r. spectrum, in CDCl₃, showed three O-methyl singlets at τ 6·12 (methoxy-aryl), 6·45, and 7·07, and an N-methyl singlet at τ 7·56. The singlet at τ 7·07 is expected for an O-methyl group at C-6 cis to, and shielded by, the aromatic ring. Protons at C-5 and C-8 gave singlets at τ 5·25 and 3·56. The low-field position of the olefinic proton signal suggests that the oxime group has the syn-configuration. In hexadeuteriodimethyl sulphoxide the oximinohydroxy-group gave an n.m.r. signal τ -1·47. The acetal (II; R = Me) dissolved sparingly in aqueous sodium hydroxide and was reprecipitated by carbon dioxide but did not give a colour with ferric chloride. The u.v. spectrum showed a red shift to $\lambda_{\rm max}$ 273 nm. (ϵ 17,150)

upon addition of sodium ethoxide to an ethanolic solution. A similar shift, presumably induced by ionisation of the oxime group, was observed with the syn-oxime of cholest-4-en-3-one: 5 λ_{max} 241 nm (ϵ 23,050) in EtOH, 262 nm. (22,480) in EtOH-EtONa.

The methiodide of (II; R = Me) underwent Hofmann elimination at room temperature with potassium t-butoxide in dimethylformamide. The extended chromophore in the resulting methine (III), m.p. 223—224°, was apparent from the u.v. absorption, $\lambda_{\rm max}$ 257 nm (ϵ 18,000) and 350 nm (ϵ 12,650) and the n.m.r. olefinic signals (in CDCl₃), τ 3.57 (singlet), 3.44 and 3.78 (doublets, J 9.7 Hz). The oximinohydroxy-group absorbed at τ -1.8 in (CD₃)₂SO.

(Received, November 21st, 1968; Com. 1594.)

¹ K. W. Bentley, "The Chemistry of the Morphine Alkaloids", Clarendon Press, Oxford, 1954, p. 188, and references cited.
² D. H. R. Barton, G. W. Kirby, W. Steglich, G. M. Thomas, A. R. Battersby, T. A. Dobson, and H. Ramuz, J. Chem. Soc., 1965, 2423.

³ C. H. Boehringer Sohn, D.R.-P. 437,451/1926.

⁴ U. Eppenberger, M. E. Warren, and H. Rapoport, Helv. Chim. Acta, 1968, 51, 381.

⁵ C. W. Shoppee, G. Krüger, and R. N. Mirrington, J. Chem. Soc., 1962, 1050.