The Crystal Structure of $\mathbf{X e F}_{2}, \mathbf{2 S F}_{5}$

By (Mrs.) V. M. McRae, R. D. Peacock, and D. R. Russell*
(Department of Chemistry, The University, Leicester LE1 7RH)

The first reported adducts of XeF_{2} included a yellow compound corresponding to the composition $\mathrm{XeF}_{2}, 2 \mathrm{SbF}_{5}{ }^{1}$ It was suggested that this had an essentially covalent structure with possible fluorine bridging. The crystal structure of the adduct has now been determined by X-ray diffraction methods, and shown to be consistent with a formulation approximating to $[\mathrm{XeF}]+\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$.

A suitable small crystal was obtained by slowly cooling the molten adduct in an evacuated glass capillary tube. The crystal was monoclinic, $a=8.07, b=9.55, c=7.33 \AA$, $\beta=105 \cdot 8^{\circ}, U=543 \AA^{3} ; D_{\mathrm{c}}=3.69$ for $\mathrm{XeSb}_{2} \mathrm{~F}_{12}, M=$ $602 \cdot 8$, and $Z=2$, space group $P 2_{1} .838$ independent reflexion intensities were measured by an integrating
microdensitometer from Weissenberg and precession photographs, taken with Mo- K_{α} radiation. At the present stage of refinement R is 0.11 with anisotropic Xe and Sb atoms and isotropic F atoms. The atomic arrangement is shown in the Figure.

From the distribution of bond lengths it can be argued that the crystal structure is derived from an ionic formulation $[\mathrm{XeF}]+\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$-. The Xe-F bond length, $1.84 \pm$ $0.04 \AA$, is less than found in $\mathrm{XeF}_{2}{ }^{2}(2.0 \AA)$ and compares with the value 1.90 ± 0.03 observed in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]+\left[\mathrm{AsF}_{6}\right]^{-3}$ The overall geometry of the $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$unit is very similar to that of $\left[\mathrm{Nb}_{2} \mathrm{~F}_{11}\right]^{-}$both in terminal and bridging F bond lengths. ${ }^{4}$

The next shortest xenon-to-fluorine contact at $2 \cdot 23 \AA$ is so much less than the sum of the estimated van der Waals radii ($3.5 \AA$, by using $2 \cdot 2 \AA$ for Xe taken from its crystal structure ${ }^{5}$ at $58^{\circ} \mathrm{K}$) that this must be taken as evidence of

Figure. The molecular structure of $\mathrm{XeF}_{2}, 2 \mathrm{SbF}_{5}$ e.s.d.'s bond lengths $0.04 \AA$
considerable bond formation. Eight further fluorine atoms lie at distances ranging from $3 \cdot 2-3.5 \AA$ from the xenon, which is probably a better representation of the nonbonding Xe-F contact (this is $3.4 \AA$ in XeF_{2}). The $\mathrm{Xe}-\mathrm{F}-$ Sb angle of 147° is very similar to the fluorine bridge angle in the $\mathrm{Sb}_{2} \mathrm{~F}_{11}$ unit (150°), in which the $\mathrm{Sb}-\mathrm{F}$ bond lengths involved in fluorine bridging ($1.98,2.05 \pm 0.04 \AA$) are significantly longer than the terminal $\mathrm{Sb}-\mathrm{F}$ bonds (average $1.83 \pm 0.04 \AA$), as is usual. We prefer to use the notation $[\mathrm{XeF}]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$as a formalism only, and to regard the compound as an essentially covalent molecule. Large variations in bond lengths involving heavy elements have been noted before in the case of mercury. ${ }^{6}$ The discrepancy between the bond lengths in the $\mathrm{Xe}-\mathrm{F}-\mathrm{Sb}$ unit reflects the greater affinity of antimony for fluorine over xenon.

For similar reasons the representation of the cation ${ }^{3}$ in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]+\left[\mathrm{AsF}_{6}\right]-$ as $\mathrm{FXe}+\mathrm{F}-\mathrm{XeF}^{+}$must be treated cautiously, since the difference between terminal and bridging Xe-F distances of only $0.24 \AA$ is of the same order as the corresponding difference found in fluorine-bridged, covalent polymers such as $\mathrm{Nb}_{4} \mathrm{~F}_{20}{ }^{7}$
(Received, November 19th, 1968; Com. 1578.)

[^0]
[^0]: ${ }^{1}$ A. J. Edwards, J. H. Holloway, and R. D. Peacock, Proc. Chem. Soc., 1963, 275; B. Cohen and R. D. Peacock, J. Inorg. Nuclear Chem., 1966, 28, 3056.
 ${ }^{2}$ H. A. Levy and P. A. Agron in "Noble Gas Compounds," ed. H. H. Hyman, University of Chicago Press, Chicago, 1963, p. 221.
 ${ }^{3}$ F. D. Sladky, P. A. Bullinger, N. Bartlett, E. G. DeBoer, and A. Zalkin, Chem. Comm., 1968, 1048.
 ${ }^{4}$ A. J. Edwards and G. R. Jones, Chem. Comm., 1968, 346.
 ${ }^{5}$ G. H. Cheesman, and C. M. Sloane, Proc. Phys. Soc., 1957, 70, B, 700.
 ${ }^{6}$ D. Grdenic, Quart. Rev., 1965, 19, 303.
 ${ }^{7}$ A. J. Edwards, J. Chem. Soc., 1964, 3714.

