cis- and trans-1,2-Dimethyl-1,2-diphenyl-1,2-disilacyclohexane: Preparation and Stereospecific Oxidation with Perbenzoic Acid

By K. Tamao, M. Ishikawa, and M. Kumada*
(Department of Synthetic Chemistry, Kyoto University, Kyoto, Japan)

Since the discovery of optically active α-naphthylphenylmethylsilanes, ${ }^{1}$ much research has centred on the stereochemistry of acyclic organosilicon compounds, ${ }^{2}$ but little is known of the stereochemistry of silicon-containing heterocyclic compounds. ${ }^{3}$ We have synthesised the cisand trans-isomers of 1,1,2,2-tetrasubstituted 1,2-disilacyclohexanes (I) and carried out the stereospecific oxidation of the phenyl derivative (Ia) with perbenzoic acid.

RMeClSi-SiClMeR
(Ia) $\mathrm{R}=\mathrm{Pl}$
(IIa) $\mathrm{R}=\mathrm{Ph}$
(Ib) $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(IIb) $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$

(III)

A mixture of cis- and trans-1,2-dimethyl-1,2-diphenyl-1,2disilacyclohexane (Ia) was prepared (75%) by the reaction of the di-Grignard reagent from 1,4 -dibromobutane with 1,2-dichioro-1,2-dimethyldiphenyl-1,2-disilane (IIa) in tetrahydrofuan. The disilane (IIa) was obtained (50%) by the action of phenylmagnesium chloride on s-tetrachlorodimethyldisilane. ${ }^{4}$ Similarly, a mixture of cis- and trans-1,2-bis-(p-chlorophenyl)-1,2-dimethyl-1,2-disilacyclohexane (Ib) was prepared (70%) from the corresponding dichlorodisilane (IIb). The isomers of both cyclic systems (I) could be separated by fractional distillation or preparative v.p.c.

The geometrical configuration of the p-chlorophenyl compound (Ib) was determined from dipole moment data. Thus, the isomer with a shorter retention time on v.p.c. had a larger value ($2 \cdot 9_{2} \mathrm{D}$) than the other ($2 \cdot 1_{2} \mathrm{D}$), and the results indicated that the former is cis and the latter is
trans. The isomers of the phenyl derivative (Ia) were assigned to cis- and trans-forms by correlation with the p-chlorophenyl derivative (Ib) by the techniques of Summerbell et al. ${ }^{5}$ Thus the action of ethyl bromide and magnesium on both the cis- and the trans-isomer of the p-chlorophenyl derivative (Ib) in tetrahydrofuran, followed by hydrolysis, converted them, with the asymmetric silicon centres intact, into the cis- and the trans-isomer, respectively, of the phenyl derivative in excellent yield.

For both cyclic systems (I), the cis-isomers have smaller physical constants and shorter retention times on v.p.c. than the trans-isomers. ${ }^{1} \mathrm{H}$ N.m.r. spectroscopy showed that the methyl protons in cis-isomers of both the phenyl and p-chlorophenyl derivatives absorb ca. 0.07 p.p.m. to lower field than those in the trans-isomers. This is consistent with the above assignments in view of the larger effect of magnetic anisotropy of the benzene ring expected for the trans-isomers.

Both the cis- and the trans-isomer of the phenyl derivative (Ia) reacted with perbenzoic acid in dichloromethane at room temperature to afford quantitatively the cis- or the trans-2,7-dimethyl-2,7-diphenyl-1-oxa-2,7-disilacycloheptane (III), respectively. This very high stereospecificity of reaction supports the molecular mechanism previously suggested for the perbenzoic acid oxidation of the siliconsilicon bond. ${ }^{6}$

We thank Professor R. Fujishiro and Dr. K. Kimura (Osaka City University) for advice and help in dipole moment measurements. This work was supported in part by Tokyo-Shibaura Electric Co., Ltd. and Nitto Electric Industrial Co., Ltd.
(Received, November 18th, 1968; Com. 1570.)

[^0]
[^0]: ${ }^{1}$ L. H. Sommer and C. L. Frye, J. Amer. Chem. Soc., 1959, 81, 1013.
 ${ }^{2}$ See L. H. Sommer, "Stereochemistry, Mechanism and Silicon," McGraw-Hill, New York, 1965.
 ${ }^{3}$ R. J. P. Corriu and J. P. Masse, Chem. Comm., 1967, 1287.
 ${ }^{4}$ H. Sakurai, T. Watanabe, and M. Kumada, J. Organometallic Chem., 1967, 7, p. 15.
 ${ }^{5}$ R. K. Summerbell, B. S. Sokolski, J. P. Bays, D. J. Godfrey, and A. S. Hussey, J. Org. Chem., 1967, 32, 946.
 ${ }^{6}$ H. S.akurai, T. Imoto, N. Hayashi, and M. Kumada, J. Amer. Chem. Soc., 1965, 87, 4001.

