Synthesis of 2-Deoxy-2-fluoro-D-glucose

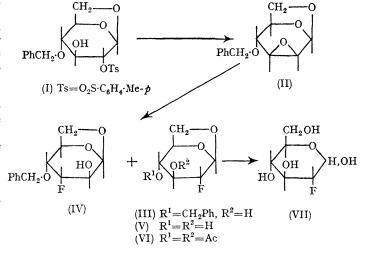
By Josef Pacák,* Zdeněk Točík, and Miloslav Černý (Department of Organic Chemistry, Charles University, Prague-Albertov, Czechoslovakia)

FLUORINATED CARBOHYDRATES have been much investigated.¹ During studies on 1,6-anhydro- β -D-glucopyranose, we have prepared 2-deoxy-2-fluoro-D-glucose (VII).

The starting compound (II)² [m.p. 63-65°, $[\alpha]_{\rm D}$ -34° (CHCl₃)] was prepared by the action of sodium methoxide on the corresponding toluene-p-sulphonate³ (I). With potassium hydrogen fluoride (boiling ethylene glycol,⁴ 2 hr., under CO_2), (I) gave (after chromatographic separation on silica gel) a fluorohydrin (III) as the main product, together with a small amount of the isomeric compound (IV). The fluorohydrin (III), m.p. 67–70°, $[\alpha]_D$ –43° (CHCl₃), is thought to have the gluco-configuration, and its isomer (IV), m.p. 102–103°, $[\alpha]_{\mathbf{p}} - 95^{\circ}$ (CHCl₃), the *altro*-configuration. The proposed structures of both compounds are in accordance⁵ with their n.m.r. spectra (100 MHz; CDCl₃): acetate of (III), τ 4·43 (complex, H-1), 5·74 (d,H-2, $J_{F-2,H-2}$ 45 Hz), 4.86 (d, H-3, $J_{F-2,H-3}$ 17 Hz), and 6.73 (complex, H-4); acetate of (IV), 4·47 (q, H-1, J_{H-1,H-2} 1·5, J_{F·3,H-1} 6·5 Hz), 4·77 (octet, H-2, $J_{F-3,H-2}$ 13, $J_{H-1,H-2}$ 1.5, $J_{H-2,H-3}$ 8.5 Hz), 5.20 (octet, H-3, PhCH, O $J_{\text{H-2,H-3}}$ 8.5, $J_{\text{F-3,H-3}}$ 48, $J_{\text{H-3,H-4}}$ 4.5 Hz), and 6.04 (m, H-4)].

Hydrogenolysis of (III) (Pd-C, EtOH, 40-50°) gave a compound (V), m.p. 129-130°, $[\alpha]_{\rm p}$ -72°(H₂O) [diacetate (VI), m.p. 60—61°, $[\alpha]_{D}$ -67.5 (CHCl₃), n.m.r. (100 MHz; $CDCl_3$ ~ 4.43 (complex, H-1), 5.74 (d, H-2, $J_{F-2,H-2}$ 45 Hz), 5.0 (d, H-3, $J_{F-2,H-3}$ 17 Hz), and 5.34 (complex, H-4)].

2-Deoxy-2-fluoro-D-glucose (VII) was prepared by hydrolysis of (V) in a sealed tube at 165° with aqueous (1%)toluene-p-sulphonic acid (5 hr.). After deacidification (Amberlite IR 45) a syrup was isolated which crystallised


¹ J. E. G. Barnett, Adv. Carbohydrate Chem., 1967, 22, 177.

² J. Halbych, unpublished results.

 ³ M. Cerný, L. Kalvoda, and J. Pacák, Coll. Czech. Chem. Comm., 1968, 33, 1143.
⁴ S. Cohen, D. Levy, and E. D. Bergmann, Chem. and Ind., 1964, 1802; J. A. Wright and N. F. Taylor, Carbohydrate Res., 1967, 3, 333, 1963, 6, 347.

L. D. Hall and J. F. Manville, Canad. J. Chem., 1967, 45, 1299; A. B. Foster, R. Hems, L. D. Hall, and J. F. Manville, Chem. Comm., 1968, 158; L. D. Hall and L. Evelyn, Chem. and Ind., 1968, 183.

from methanol. This compound (VII) {yield ca. 50%, m.p. 170–176°, $[\alpha]_{D} + 37^{\circ} (2 \text{ min.}) \rightarrow + 62^{\circ} (120 \text{ min.}) (H_2O) \}$ reduces Fehling's solution; $R_{\rm F}$ 1.1 (relative to 2-deoxy-2-Dglucose on Whatman 1 in butan-1-ol-water).

The analyses of all reported compounds are in accordance with the molecular formulae given.

(Received, October 28th, 1968; Com. 1454.)