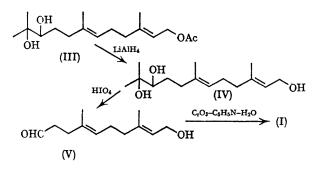
Identification and Synthesis of *trans,trans-3,7-Dimethyl-2,6-decadien-*1,10-dioic Acid, a Component of the Pheromonal Secretion of the Male Monarch Butterfly[†]

By J. Meinwald,* A. M. Chalmers, T. E. Pliske, and T. Eisner

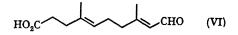
(Department of Chemistry, and Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850)

EXTRACTION of the hairpencils of *ca*. 6500 male monarch butterfiles (*Danaus plexippus*) with methylene chloride as previously described,¹ and repeated t.l.c. of the extract, resulted in the isolation of a colourless solid (11.8 mg., 6% of the non-lipid material), contaminated to a small extent (<5%) with the previously described acid (II).¹ The i.r. spectrum (CH₂Cl₂) of this component showed peaks at 2.75, 2.87, 2.90—4.00m (OH), 5.87 br (CO) and 6.08 μ ; in diethyl ether two carbonyl bands (5.74 and 5.80 μ) were observed. The u.v. spectrum [λ_{max} (n-pentane) 225 m μ (log ϵ 4.16, based on a molecular weight of 226 from mass spectral data)] supported the presence of a conjugated carbonyl function as suggested by the i.r. spectral evidence.

The mass spectrum revealed a parent ion at m/e 226


 $(C_{12}H_{18}O_4)^+, \ddagger$ and prominent ions at 208 $(C_{12}H_{16}O_3)^+, \ddagger$ 127 $(C_7H_{11}O_2)^+$, and 100 $(C_5H_8O_2)^+$; these results will be discussed elsewhere.² The n.m.r. spectrum (CDCl₃) offered good evidence for structure (I); two olefinic absorptions at τ 4.17 (s, 1H) and, τ 4.69br (1H) could be assigned to the deshielded α -proton of an $\alpha\beta$ -unsaturated acid and the proton of the trisubstituted double-bond respectively. Absorption at $\tau = 0.19$ br (2H) corresponded to the two acidic protons, an assignment confirmed by D₂O exchange. The signal at $\tau 8.32$ (3H) was attributed to an allylic methyl group and poorly resolved absorption at τ 7.77 (7H) was consistent with four allylic methylene protons plus three allylic methyl protons deshielded by a cisoriented carboxyl-group; finally absorption at τ 7.54br (4H) was attributed to the two additional methylene groups α and β to the saturated carboxyl-group. These assignments are in good agreement with their counterparts in the acid (II).

[‡] Satisfactory mass analyses were obtained on an A.E.I. MS-902 C1 double focussing mass spectrometer for all ions mentioned.


[†] Part of the series on Pheromones.

Confirmation of the structure of compound (I) was obtained both by its synthesis from the acid (II) by the Cornforth oxidation method,³ as well as from the diol (III) as outlined below. The acetoxy-diol (III) had been prepared previously in this laboratory from trans, transfarnesol 4

The synthetic material, m.p. 93-96°, was identical with the natural product [t.l.c., g.c. (on the derived

dimethyl esters), i.r. and mass spectrometric results]. It is of note that the major product from the oxidation of (V) was the acid (VI) i.r. (CHCl₃) 5.73, 5.84, 5.99 µ; u.v. $\lambda_{\max}(\text{cyclohexane})$ 235 m μ (log ϵ 3.96); mass spectrum m/e 210, 127, and 83] which could be further oxidized to the diacid (I) with silver oxide. However, (I) prepared in this manner was contaminated to a small extent by an unidentified component detectable only by g.l.c.

We acknowledge financial support of this research by the National Institutes of Health and by Hoffmann-LaRoche Inc. We thank Dr. S. Shrader and the Cornell High Resolution Mass Spectrometer Facility, supported by the N.I.H., for mass spectra.

(Received, November 8th, 1968; Com. 1523.)

¹ J. Meinwald, A. M. Chalmers, T. E. Pliske, and T. Eisner, Tetrahedron Letters, 1968, 4893.

- Shrader and A. M. Chalmers, unpublished work.
 S. Shrader and A. M. Chalmers, unpublished work.
 R. H. Cornforth, J. W. Cornforth and G. Popjak, *Tetrahedron*, 1962, 18, 1351.
 J. Meinwald, Y. C. Meinwald, and P. M. Mazzocchi, *Science*, in the press.