The Cobalt(II) Intermediate in the Reactions of Vanadium(II) and Monosubstituted Pentacyanocobaltate(III) Ions†

By KEITH M. DAVIES and JAMES H. ESPENSON*

(Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010)

REACTIONS of the type shown in equation (1) have not been

$$\begin{array}{rl} {\rm Co(CN)_5 X^{3-} + V^{2+} + 5H^+ & = \\ & {\rm Co^{2+} + V^{3+} + X^- + 5HCN} \end{array} \tag{1}$$

studied previously. They have proved to be of especial interest since they have afforded a means of examining the reactions of the CoIII complex after its reduction. Although an ammine-cobalt(II) complex such as $Co(NH_3)_5^{2+}$ is probably the precursor of $\mathrm{Co}^{2+}{}_{aq}$ in the reaction of ${\rm Co}({\rm NH_3})_5 X^{2+}$ and ${\rm V}^{2+},$ for example, its presence has not been demonstrated. The energetics are frequently discussed in such terms, however, for both inner-sphere and outer-sphere reactions.¹ The choice of oxidizing agent in the present reactions permits experiments to demonstrate that $Co(CN)_{5}^{3-}$ is an intermediate, owing to its fairly slow decomposition to Co²⁺ and HCN in perchloric acid solution.²

Kinetic studies have been carried out in aqueous perchloric acid solution on the reactions given in eq. 1 for X =Cl-, Br-, I-, -SCN-, N₃-, and H₂O. The reactions proceeded through a metastable intermediate, as shown by the maximum in the absorbance-time traces in the wavelength regions 260-350 nm., as illustrated in the Figure. The intermediate was shown to be Co(CN)₅³⁻ by the absorbance changes" accompanying the initial reduction,4 by comparison of the decay rates of the intermediate with those of $Co(CN)_{5}^{3-}$ under similar conditions,² and by use of Co(NH₃)₅NCS²⁺ as a scavenger^{6,7} for Co(CN)₅³⁻ according to equation (2).

$$Co(CN)_{5}^{3-} + Co(NH_{3})_{5}NCS^{2+} \rightarrow Co(CN)_{5}SCN^{3-} + Co^{2+} + 5NH_{3}$$
(2)

In accord with the scheme suggested, the rate of decomposition of the intermediate was independent of the initial CoIII concentration. The decay reaction followed the expected² first-order kinetics with a rate constant independent of which starting complex was used. There was a dependence on V^{2+} concentration, which was in considerable excess, presumably because of ion-pair formation (ion pairing is an important feature of the first reaction stage).4 Rate constants for decay of the intermediate at 25.0° and 1.00M H⁺ were 0.185 sec.⁻¹ (X = Br⁻), 0.175 sec.⁻¹ (Cl⁻), and 0.169 sec.^{-1} (H₂O). Each of the values refers to 0.01 M V²⁺ and an initial Co^{III} concentration of $3-7 \times 10^{-5}$ M. The comparison with the known $Co(CN)_5^{3-}$ complex in the presence of vanadium(II) is illustrated by data at 0.50m H+, 1.00M ionic strength at 25.0° , for which the rate constant for the intermediate is 0.112 sec.⁻¹ (X = Br⁻, 0.01M V²⁺) compared to 0.115 sec.⁻¹ for authentic Co(CN)₅³⁻ in the presence of 0.01 M V^{2+} and 0.257 sec.^{-1} in the absence of V2+.

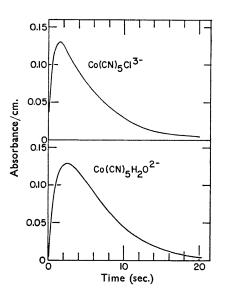


FIGURE. Observed absorbance-time traces at λ 280 nm. for the reaction of Co(CN)₅X³⁻ with V²⁺ at 25.0° and $\mu = 1.00$ M. Upper curve 5×10^{-5} M Co(CN)₅Cl³⁻, 0.0105M V²⁺; lower curve 7×10^{-5} M Co(CN)₅OH₂²⁻, 0.0053M V²⁺.

The product of the scavenging experiments, Co(CN)5-SCN³⁻, was separated by ion exchange, and identified by its known absorption spectrum.7 In these experiments the vanadium(II) concentration was less than the total CoIII concentration, and the conversion into Co(CN)₅SCN³⁻ was only partial owing to the reaction of this ion with V^{2+} . Under the conditions chosen, the direct reaction of V^{2+} and Co(NH₃)₅NCS²⁺ was unimportant.⁸

(Received, November 21st, 1968; Com. 1596.)

[†] Work performed in the Ames Laboratory of the U.S. Atomic Energy Commission.

- ¹ R. C. Patel and J. F. Endicott, J. Amer. Chem. Soc., 1968, 90, 6364.

- ¹ R. C. Patel and J. F. Endicott, J. Amer. Chem. Soc., 1968, 90, 6364.
 ² J. H. Espenson and J. R. Pipal, Inorg. Chem., 1968, 7, 1463.
 ³ N. K. King and M. E. Winfield, J. Amer. Chem. Soc., 1961, 83, 3366.
 ⁴ K. M. Davies and J. H. Espenson, to be published.
 ⁵ J. P. Candlin, J. Halpern, and S. Nakamura, J. Amer. Chem. Soc., 1963, 85, 2517.
 ⁶ I. Stotz, W. K. Wilmarth, and A. Haim, Inorg. Chem., 1968, 7, 1250.
 ⁷ J. P. Candlin, J. Halpern, and D. L. Trimm, J. Amer. Chem. Soc., 1964, 86, 1019.