Protonation at *sp*-Hybridised Carbon; Generation of Allylic Carbonium Ions from Allenes

By Charles U. Pittman, jun.

(Department of Chemistry, University of Alabama, Alabama 35486)

DENO and his co-workers¹ reported the first direct observations of allylic carbonium ions, including cyclopentenyl, cyclohexenyl, and 1,1,3,3-tetramethylallyl cations. In sulphuric acid, acyclic allylic cations, with the exception of 1,1,3,3-tetra-alkyl compounds, form a complex mixture of thermodynamically stable, highly alkylated cyclopentenyl carbonium ions.² Olah and Sommer³ demonstrated that less highly substituted allylic cations were stable in $FSO_3H-SbF_5-SO_2$ at low temperatures. In this medium,

at 30°, pentane-2,4-diol was converted quantitatively into the 1,3-dimethylallyl cation,³ and allylic cations were also produced by ionization-cleavage of several cyclopropyl halides.⁴

The 1,3-dimethylallyl (I) and 1,1,3,3-tetramethylallyl (II) cations are generated quantitatively by the addition of 1,3-dimethylallene and tetramethylallene, respectively, to FSO_3H-SbF_5 at -70° . The n.m.r. and u.v. band positions and splittings (Table 1) serve to identify the ions,^{3,4} which were unchanged after 1 week at -70° . This is the first example of the direct generation of stable allylic cations by protonation of an allene.[†]

Direct protonation of the sp-hybridised C-2 was confirmed by the quantitative production of deuteriated (I) and (II) in FSO₃D-SbF₅. The C-2 hydrogen n.m.r. bands of (I) (8·29) and (II) (7·81) were absent, but no further incorporation of deuterium or other rearrangement products were observed. Initial deuteriation at C-1 or C-3 would generate a vinyl carbonium ion, which could undergo either 1,2-methyl or -hydride (deuteride) shift. A 1,2methyl shift would result in the 1,1,2,3-tetramethylallyl cation from 1,1,3,3-tetramethylallene or the 1,2-dimethylallyl cation from 1,3-dimethylallene. If a 1,2-hydride shift after C-1 protonation had occurred during generation

† A footnote in reference 4, p. 6083 indicates that similar work is being performed in Professor Olah's laboratory.

Nuclear magnetic resonance chemical shifts \ddagger and ultraviolet spectra of allylic cations at -70°

Cation	Acid	Methyls C-1, -3	Hydrogen C-1, -3	Hydrogen C-2	U.v. λ_{max} (nm.)
(I)	FSO ₃ H-SbF ₅	$3 \cdot 43 \mathrm{d}$	9-98m	8·24t¶	299
(\mathbf{II})	FSO ₃ D-SbF ₅ FSO ₂ H-SbF ₅	3·43d§ 2·89s	9.98br q**	7·81s	305
()	FSO ₃ D-SbF ₅	2.89s			

[‡] In p.p.m. from Me₄Si (capillary tube) on a Varian HA-100 spectrometer; § J 7·3 Hz; ¶ J 13·8 Hz; ** J 7·3 Hz.

of ion (I), the 8.29 band would have appeared. Since no evidence for these shifts was found, direct protonation at C-2 is invoked. Initial formation of the less stable vinyl carbonium ion is unlikely, since Peterson⁵ observed that $S_{\rm N}$ l solvolysis of vinyl p-bromobenzene sulphonates was at least 5.7 \times 10⁴ times slower than sp³-hydridised p-bromobenzenesulphonate solvolysis.

Addition of the stated allenes to 96% H2SO4 produced a mixture of cations of the types (III) and (IV), which are the expected thermodynamic products of acyclic allyl cations in this medium.^{6,7} The ratio of types (III) and (IV) was determined by comparison of the areas of the characteristic^{6,7} acid solution n.m.r. bands at 7.8-8.3 [C-2 H in (IV)] and 2.14 p.p.m. [C-2 Me in (III)]. This ratio was 3:2 from tetramethylallene and 3:7 from 1,3-dimethylallene. Complex mixtures of alkylated cyclopentadienes were formed on pouring the H₂SO₄ solutions into an excess of dilute NaOH.

2-Methyl-4-phenylpenta-2,3-diene8 was dissolved into FSO₃H at 10° and then quenched into excess of dilute NaOH to yield 1,3,3-trimethylindene (38%) (n.m.r. and i.r. identical to those reported,⁶ b.p. 93-95°/17 mm.⁶⁻⁹) and its dimer (47%) (b.p. 200-218°/17 mm.6). 1,3,3-Trimethylindene is the known cyclization product of the 1-phenyl-1,3,3-trimethylallyl cation (V) produced on protonation of 2-methyl-4-phenylpenta-1,3-diene.6-10 Thus, C-2 allene protonation is again implicated.

(Received, November 25th, 1968; Com. 1622.)

¹ N. C. Deno, J. M. Bollinger, N. Friedman, K. Hafer, J. D. Hodge, and J. J. Houser, *J. Amer. Chem. Soc.*, 1963, 85, 2998; N. C. Deno, D. B. Boyd, J. D. Hodge, C. U. Pittman, jun., and J. O. Turner, *ibid.*, 1964, 86, 1745; N. C. Deno and C. U. Pittman, jun., ibid., 1964, 86, 1745.

²G. A. Olah and C. U. Pittman, jun., Adv. Phys. Org. Chem., 1966, 4, 305.

^aG. A. Olah and J. Sommer, J. Amer. Chem. Soc., 1968, 90, 927.
^aG. A. Olah and J. M. Bollinger, J. Amer. Chem. Soc., 1968, 90, 6082.
^bP. E. Peterson and J. M. Indelicato, J. Amer. Chem. Soc., 1968, 90, 6515.
^cC. U. Pittman, jun., Ph.D. Thesis, Pennsylvania State University, 1964.
⁷N. C. Deno, H. G. Richey, jun., N. Friedman, J. D. Hodge, J. J. Houser, and C. U. Pittman, jun., J. Amer. Chem. Soc., 1963, 85, 90. 2991. ⁸ V. I. Pansevich-Kolyada and Z. B. Idel'chik, Zhur. obshchei. Khim., 1954, 24, 1617 (Chem. Abs., 1955, 49, 12429d).

⁹ J. D. Colonge and P. Gornier, Bull. Soc. chim. France, 1948, 15, 4381.

¹⁰ N. C. Deno, C. U. Pittman, jun., and J. O. Turner, J. Amer. Chem. Soc., 1965, 87, 2153.