The Structure of Platycodigenin, a 4,4-Di(hydroxymethyl)-triterpene

By Tokuo Kubota* and Hisako Kitatani

(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan)

PLATYCODIGENIN is a triterpenoid pentahydroxy-acid, $C_{30}H_{48}O_7$, isolated previously¹ as a major sapongenin of the roots of *Ptatycodon grandiflorum*. Recently,² we isolated this sapogenin[†] together with polygalacic acid from the same plant and revised the structure of the latter

to $2\beta, 3\beta, 16\alpha, 23$ -tetrahydroxyolean-12-en-28-oic acid (Ia). We now present evidence that platycodigenin is $2\beta, 3\beta, 16\alpha$ -23,24-pentahydroxyolean-12-en-28-oic acid (IIa).

Platycodigenin, C₃₀H₄₈O₇, m.p. 250-252° (decomp.), $[\alpha]_{\rm D}$ +46.5° (EtOH), on treatment with diazomethane afforded the methyl ester, $C_{31}H_{50}O_7$, m.p. 246-250° (decomp.), $[\alpha]_{D} + 44.7^{\circ}$ (EtOH). The mass spectrum of the ester $(M^+$ 534) exhibited intense fragment peaks at m/e 278, 260, and 201, suggesting that the functional groups in rings D and E are the same as those of methyl polygalacate (Ib).² On treatment of the ester with acetic anhydride and pyridine at room temperature, one hydroxygroup resisted acetylation but, on heating, was acetylated to give the penta-acetate, which was amorphous but homogeneous on t.l.c. The n.m.r. spectrum of the pentaacetate resembles that of (Ic) except that one methyl group (τ 8.97) in (Ic) is replaced by AcOCH₂ (IIc) (τ 5.45) and the acetoxy-group brings about some additional shift of the protons at C-3 and C-23 to lower field. The results suggest a close relationship between the structures of polygalacic acid and platycodigenin.

Treatment of platycodigenin methyl ester [*i.e.*, (IIb)] with acetone and toluene-p-sulphonic acid gave an amorphous diacetonide, M^+ 614, the constitution of which was further confirmed by the n.m.r. spectrum of its acetylated derivative. Acetonide formation under more gentle conditions, carried out in a mixture diluted with benzene, afforded mainly two monoacetonides, $C_{34}H_{54}O_7$, m.p. 153—157°, $[\alpha]_D$ +63·0° (CHCl₃) (IIIa) and m.p. 247—249°, $[\alpha]_D$ +39·0° (EtOH) (IVa). The former acetonide (IIIa) on acetylation yielded an amorphous acetonide triacetate (IIIb). On comparison of the n.m.r.

 \dagger O. Tanaka, T. Akiyama and S. Shibata [Abstracts of the 88th Annual Meeting of the Pharmaceutical Society of Japan, April 1968, p. 216 and *Chem. and Pharm. Bull. (Japan)*, in the press] have recently reported an independent isolation of platycodigenin from the same source. We thank Dr. Tanaka for confirming the identity of the two specimens.

spectra of (IIIb) and the penta-acetate (IIc), the two oxygen-bearing methylene groups in (IIIb) appear at significantly higher fields, τ 6.52 (2H, s), and τ 6.09 and 5.81 (2H, AB q, J 11 c./sec.). This suggests that the two primary hydroxy-groups of (IIb) relate to the acetonide linkage of (IIIa) and treatment of (IIIa) with phosgene and pyridine formed a five-membered-ring cyclic carbonate [ν_{max} (CHCl₃) 1805 cm.⁻¹] between C-2 and C-3. Acetylation of the other monoacetonide (IVa) afforded an acetonide triacetate (IVb), C₄₀H₆₀O₁₀, m.p. 237—240°, [α]_D +2.7° (CHCl₃). Comparison between the n.m.r. spectra of (IVb) and (IIc) showed transposition of the peaks at τ 5.45 (2H, s) and 4.97 (1H, d, J 4c./sec.) in (IIc) to τ 6.18 (2H, s) and 6.07 (1H, d, J 8.5 c./sec.) in (IVb), respectively, and suggested that the acetonide linkage was formed between the 3β - and 24-hydroxy-groups.

From the above chemical results, the structure of platycodigenin is 2β , 3β , 16α ,23,24-pentahydroxyolean-12en-28-oic acid (IIa),[†] the first example of a geminal di(hydroxymethyl) group at C-4 in naturally occurring triterpenes. Unusual chemical properties result from the crowded hydroxy-groups of (IIa), which will be described in a full publication.

(Received, November 15th, 1968; Com. 1554.)

[‡] Just before this communication was submitted, T. Akiyama, Y. Iitaka, and O. Tanaka (*Tetrahedron Letters*, 1968, 5577) have reported that their group reached the same conclusion as ours by X-ray diffraction studies of a derivative of platycodigenin.

¹ M. Tsujimoto, J. Agric. Chem. Soc. Japan, 1940, 16, 613 and earlier papers.

² T. Kubota and H. Kitatani, Chem. Comm., 1968, 1005.