A o-Bonded Cobalt Allene

By M. D. JOHNSON* and CAROL MAYLE (Chemistry Department, University College, London, W.C.1.)

Summary A σ -bonded cobalt allene has been prepared by the reaction of the bis(dimethylglyoximato)pyridinecobalt(I) anion with prop-2-ynyl bromide. Although another σ -bonded allenyl-metal compound had been prepared previously, it is incorrectly described as a σ prop-2-ynyl compound.

PROP-2-YNYL and ALLENYL HALIDES react with nucleophiles by $S_N 2$ or $S_N 2'$ mechanisms to give mixtures of prop-2-ynyland allenyl compounds. For example, prop-2-ynyl bromides react with bromide ion to give allenvl bromides1 [e.g. equation (1)] and allenyl bromide reacts with lithium aluminium hydride to give up to 98.3% of propyne, depending on the conditions [equation (2)]:²

 $BrCMe_2 C \equiv CH + Br^- \rightarrow Me_2C = C = CHBr + Br^-$ (1)

$$BrCH = C = CH_2 \xrightarrow{\text{LiAlH}_4} CH \equiv C \cdot CH_3 \qquad (2)$$

We anticipated, therefore, that, as bis(dimethylglyoximato)cobaltate(I) ions may apparently behave as reactive nucleophiles,3 reaction with prop-2-ynyl bromide might lead to the σ -prop-2-ynyl and/or the σ -allenylcobalt complex.

The only organometallic product which was isolated from the reaction of methanolic prop-2-ynyl bromide with a solution of the cobaltate(1) ion, prepared from sodium borohydride and hexakis(dimethylglyoximato)dipyridinedicobalt(II), was the σ -bonded bis(dimethylgyoximato)allenylpyridine cobalt(III) (I). This allene is characterised by the AB₂ ¹H n.m.r. spectrum in CDCl₃ (τ 5.15, α =CH; 5.57, γ-CH₂; J_{αγ} 6.1 c. sec.; 1.46, pyridine α-CH; 7.85, dimethylglyoxime) and by the C=C=C stretch at 1927 cm.⁻¹. These values are comparable with those for other allenes $[\tau(=CH_2) \ ca. 5.3; \ J_{\alpha\gamma} \ -6.1$ to 7.0 c. sec.; $\nu(C=C=C)$ 1950 cm.⁻¹]⁵ and are quite different from those expected for the prop-2-ynyl compound (II) [τ (=CH) ca. 7.5; τ (CH₂) est. 8 + 1; $J_{\alpha\gamma} 2.6 \pm 0.3$ c. sec.)⁶. Furthermore the absence of the σ -prop-2-ynyl cobalt is demonstrated⁷ by the lack of any C=C stretching absorption at ca. 2200 cm.⁻¹.

py Co dmgh₂CH=C=CH₂ (I) py Co dmgh₂CH₂·C \equiv CH (II)

py Co dmgh₂CH₂·CO·CH₃ (IV) (dmgh = monoanion of dimethylglyoxime)

However, though the only other σ -allenyl transition-metal complex that has been described in the literature is a perfluoroallenylrhenium carbonyl,⁸ we believe that the product of reaction of prop-2-ynyl bromide with the dicarbonyl- π cyclopentadienyliron anion, which was first described⁹ as the σ -prop-1-ynyl- and later¹⁰ as the σ -prop-2-ynyl compound, is in fact the σ -allenyl compound (III) [equation (3)]. This compound also has characteristics of an allenyl rather than a prop-2-ynyl complex, *i.e.* ¹H n.m.r.: τ 5·11, α -CH; τ 6·03, γ -CH₂; $J_{\alpha\gamma}$ 6.5 c./sec. The i.r. absorption characteristic of the allenyl group of this compound is unfortunately in the C=O stretching region and may have been obscured or misinterpreted, but no $C \equiv C$ stretching absorption was described.

$$(\pi - C_5 H_5) Fe(CO)_2^- + BrCH_2 \cdot C \equiv CH \rightarrow (\pi - C_5 H_5) Fe(CO)_2 CH = C = CH_2 \qquad (3)$$
(III)

Treatment of this compound with acid gave the prop-1ynyl-iron derivative, which was interpreted by a four-step mechanism involving two hydrogen shifts with the σ allenyliron complex as a transitory intermediate. In view of the true structure of the compound, a single hydrogen-shift is appropriate [equation (4)].

$$(\pi - C_5H_5)Fe(CO)_2CH = C = CH_2 \rightarrow (\pi - C_5H_5)Fe(CO)_2C \equiv CMe$$

On treatment of the allenylcobalt complex (I) with aqueous-methanolic hydrochloric acid, the allenyl group is hydrated to give the σ -bonded acetonylcobalt complex (IV).

(Received, January 6th, 1969; Com. 009.)

- ¹ T. L. Jacobs and W. L. Petty, *J. Org. Chem.*, 1963, **28**, 1360. ² T. L. Jacobs and R. D. Wilcox, *J. Amer. Chem. Soc.*, 1964, **86**, 2240. ³ G. N. Schrauzer, *Accounts Chem. Res.*, 1968, **1**, 97.

⁴ E. B. Whipple, J. H. Goldstein, and W. E. Stewart, J. Amer. Chem. Soc., 1959, 81, 4761; M. Karplus, J. Amer. Chem. Soc., 1960, 82, 4431.

- ⁶ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1958, p. 61.
 ⁶ E. B. Whipple, J. H. Goldstein, L. Mansell, G. S. Reddy, and G. R. McClure, J. Amer. Chem. Soc., 1959, 81, 4321.

7 Ref. 5, p. 59.

- ⁸ M. Green, N. Mayne, and F. G. A. Stone, *Chem. Comm.*, 1966, 755. ⁹ J. K. P. Ariyaratne and M. L. H. Green, *J. Organometallic Chem.*, 1964, 1, 90. ¹⁰ P. W. Jolly and R. Pettit, *J. Organometallic Chem.*, 1968, 12, 491.