The 2537Å Photolysis of Co(NH₃)₅Cl²⁺ in Aqueous Solution: Products

By R. GRAHAM HUGHES, JOHN F. ENDICOTT,* and MORTON Z. HOFFMAN (Department of Chemistry, Boston University, Boston, Massachusetts 02215)

BALZANI and his co-workers¹ have reported that u.v. photolysis of acidified solutions of $Co(NH_3)_5Cl^{2+}$ quantitatively releases into solution 5.0 moles of co-ordinated NH_3 for every g.-ion of Co^{2+} formed. They have also tentatively identified $Co(NH_3)_4(OH_2)Cl^{2+}$ by spectrophotometric methods as a minor photolysis product. Two of us² found earlier that Cl^- and Co^{2+} are quantitatively recovered after photolysis. Because the oxidation product has never been reported, we have re-examined the reaction.

We have confirmed the previous observation² that Co^{2+} and Cl^- are produced in a 1:1 ratio (see Table 1) indicating that photoaquation of Cl^- is not an important process and that ox dation of Cl^- does not occur. After complete photolysis, NH_4^+ was the only other product detected in solution.

G.l.c. and mass spectrometric analysis of the evolved gases showed N_2 and N_2O to be products of the photolysis. Quantitative analysis on a 5Å molecular-sieve column gave

the results in Table 2. The yield of N_2O was low and near the limits of detection. By the use of $^{15}\rm NH_4Cl$ or coordinated $^{15}\rm NH_3$, we have identified the origin of the N_2 as

TABLE 1

Со ²⁺ yield (10 ⁻³ м)	Cl- yield (10-3 м)	
$1.17 (\pm 0.02)$	$1.10 (\pm 0.02)$	
1.80	1.65	
2.42	2.25	
3.08	3.14	
$5 \cdot 20^{a}$	5·29ª	

 a Complete photodecomposition when $[{\rm Co(NH_3)_5Cl^{2+}}]=5\cdot28\times10^{-3}$ M.

being primarily from the NH_4^+ in the bulk solution whereas the N₂O arises primarily from the co-ordinated NH_3 . The use of ³⁶Cl⁻ in the bulk solution has shown that photolysis 196

TABLE 2

Contents of solution ^a	N ₂ Yield ^b	N₂O Yield⁰
$0.1M-HClO_4$ $0.1M-HClO_4$	0.0	0·03-0·05 0·03-0·05
0·1м-НСЮ, 0·1м-КСГ		0.03 - 0.05
0.1M-HClO ₄ , 0.1 M-NH ₄ Cl	0.1	$0.03 - 0.05 \\ 0.1$

^a $[Co(NH_3)_5Cl^{2+}] = 5.0 \times 10^{-3}$ M.

^b In equivalents relative to Co²⁺ yield; 1 mole $N_2 = 6$ equivalents. ^c In equivalents relative to Co^{2+} yield; 1 mole $N_2O = 4$ equiva-

lents.

results in no appreciable inclusion of radioactivity in the substrate $Co(NH_3)_5Cl^{2+}$.

The apparent discrepency between our results and those of Balzani¹ is easily reconciled when it is realized that even quantitative formation of N_2 would account for only $6{\cdot}7\%$ of the NH₃ bound to the metal centre. They estimated their accuracy in the NH_3 determination to be about 5%. The formation of N₂ and N₂O must be taken into account in the formulation of the reaction mechanism.

We acknowledge support of this research by the National Science Foundation.

(Received, December 12th, 1968; Com. 1703.)

¹ L. Moggi, N. Sabbatini, and V. Balzani, Gazzetta, 1967, 97, 980; V. Balzani, L. Moggi, F. Scandola, and V. Caressiti, Inorg. Chem. Acta Rev., 1967, 1, 7. ² J. F. Endicott and M. Z. Hoffman, J. Amer. Chem. Soc., 1965, 87, 3348.