The Grystal and Molecular Structure of Iminobis(aminodiphenylphosphorus) Chloride, $\left(\mathbf{P h}_{2} \mathbf{P} \cdot \mathbf{N H}_{2}\right)_{2} \mathbf{N C l}$

By J. Wesley Cox and Eugene R. Corey* \dagger
(Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221)

The structure of $\left(\mathrm{Ph}_{2} \mathrm{PNH}_{2}\right)_{2} \mathrm{NCl}$ has been determined by single crystal X-ray diffraction techniques. The compound crystallizes in space group $P \overrightarrow{1}$, and is triclinic, $a=9.363 \pm$ $0.018, b=11.35 \pm 0.02, c=11.71 \pm 0.02 \AA, \alpha=81.82 \pm$ $0 \cdot 16^{\circ}, \beta=99 \cdot 35 \pm 0 \cdot 19^{\circ}$, and $\gamma=101 \cdot 0 \pm 0 \cdot 2^{\circ}, Z=2$.

Multiple-film Weissenberg equi-inclination photographs taken with Mo- K_{α} radiation gave 1710 diffraction maxima. The two phosphorus and chlorine atom positions were located from the three-dimensional Patterson synthesis with coefficients that were sharpened for phosphorus and chlorine. The remaining non-hydrogen atom positions were established from a three-dimensional electron-density map phased on the two phosphorus atoms and the chlorine atom. A full-matrix least-squares refinement in which the four phenyl rings were treated as rigid bodies has yielded an unweightec discrepancy index, R, of $14 \cdot 0 \%$ and a weighted value, R^{\prime}, of 11.0%.

The compound is ionic and the $\mathrm{P}-\mathrm{P}-\mathrm{N}$ system of the $\left(\mathrm{Ph}_{2} \mathrm{PNH}_{2}\right)_{2} \mathrm{~N}^{+}$cation is bent, with an angle of 136°. The cation has approximate non-crystallographic two-fold symmetry about the line which bisects the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle; each of the phosphorus atoms has distorted tetrahedral

Table

Bor.d	Distances*	Bond	Angles*
$\mathrm{P}(1)-\mathrm{N}(3)$	1.58	$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{P}(2)$	136
$\mathrm{P}(2)-\mathrm{N}(3)$	1.57	$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(1)$	122
$\mathrm{P}(1)-\mathrm{N}(1)$	$1 \cdot 64$	$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{C}(1)$	108
$\mathrm{P}(2)-\mathrm{N}(2)$	$1 \cdot 66$	$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{C}(2)$	110
$\mathrm{P}(1)-\mathrm{C}(1)$	$1 \cdot 76$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	107
$\mathrm{P}(1)-\mathrm{C}(2)$	1.80	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	105
$\mathrm{P}(2)-\mathrm{C}(3)$	1.79	$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	105
$\mathrm{P}(2)-\mathrm{C}(4)$	1.78	$\mathrm{N}(3)-\mathrm{P}(2)-\mathrm{N}(2)$	121
$*_{\sigma}=0.01 \mathrm{~A}$		$\mathrm{N}(3)-\mathrm{P}(2)-\mathrm{C}(3)$	107
		$\mathrm{N}(3)-\mathrm{P}(2)-\mathrm{C}(4)$	114
		$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(4)$	107
		$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{N}(2)$	106
		$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{N}(2)$	103

co-ordination. The shortest chlorine-non-hydrogen atom distance is $3.28 \AA$ (Figure and Table).
The $\mathrm{P}-\mathrm{N}$ bond lengths fall into two ranges. The central $P(1)-N(3)$ and $P(2)-N(3)$ values are 1.58 and $1.57 \AA$, and the terminal $\mathrm{N}(1)-\mathrm{P}(1)$ and $\mathrm{N}(2)-\mathrm{P}(2)$ distances are 1.64 and $1.66 \AA$. The accepted $\mathrm{P}-\mathrm{N}$ single σ-bond distance is $1.78 \AA,{ }^{1}$ and the calculated $\mathrm{P}-\mathrm{N}$ bond length which results with maximum $p_{\pi}-d_{\pi}$ overlap for the formation of one $p_{\pi}-d_{\pi}$ bond in addition to the normal σ-bond is $1.64 \AA .{ }^{2}$ Therefore, values of the $\mathrm{P}-\mathrm{N}$ central bond lengths in this compound suggest that more than one $p_{\pi}-d_{\pi}$ bond is formed while the terminal N-P bond distances suggest the presence of one $p_{\pi}-d_{\pi}$ bond. The $\mathrm{C}(\mathrm{Ph})-\mathrm{P}$ bond-lengths are those expected for a normal $P-C \sigma$-bond.

Figure
We thank Professors V. Gutmann ${ }^{3}$ and M. Bermann for a sample of the compound.
(Received, December 23rd, 1968; Com. 1760.)

[^0][^1]
[^0]: \dagger Present address, Department of Chemistry, University of Missouri-Saint Louis, Saint Louis, Missouri 63121.

[^1]: ${ }^{1}$ E. Hcbbs, D. E. Corbridge, and B. Raistrick, Acta, Cryst., 1953, 6, 621.
 ${ }_{2}$ L. G. Hoard and R. A. Jacobson, J. Chem. Soc. (A), 1966, 1203.
 ${ }^{3}$ V. Gutmann, K. Utvary and M. Bermann, Monatsh., 1966, 97, 1745.

