The Kinetics and Stereochemistry of Pyrazoline-ring Formation. Evidence for Stereoselective Enamine-Imine Tautomerism

By H. Ferres and W. R. Jackson*

(Department of Chemistry, Queen's University, Belfast BT9 5AG)

The kinetics of cyclisation of a series of $\alpha\beta$ -unsaturated phenylhydrazones (I), with differing substitutents in the Ar¹ and Ar² rings, have been studied in acetic acid solution. A least-squares analysis of the relationship between $\log k_{56}$ and σ - or σ +-values for each reaction series showed that while σ^{+} -values were more successful in correlating substituent effects in the Ar¹ ring ($\rho - 1.44$), σ^+ -values gave only a slightly better correlation than σ -values for substituents in Ar² $(\rho = -2.54)$. The ρ -values are consistent with a mechanism involving protonation at the imine nitrogen with subsequent cyclisation leading to an intermediate Δ^3 -pyrazoline (II), which tautomerises to the stable Δ^2 -pyrazoline (III). The n.m.r. spectrum of 2-methyl-1,5-diphenyl-2-pyrazoline (III; $Ar^{1} = Ar^{2} = Ph$) showed that the H_{A} and H_{B} protons, which are diastereotopic because of the chiral centre at C-5, formed an ABX system with the HX proton: HA 7 6.6

 $(J_{\rm AX}~12\cdot2,~J_{\rm AB}~17\cdot5~{\rm Hz.});~H_{\rm B}~\tau~7\cdot3~(J_{\rm BX}~8\cdot25~{\rm Hz.});~H_{\rm X}~\tau~4\cdot95.$ The stereochemical assignments are necessarily tentative because of the limited value of the Karplus equations in a strained five-membered ring,² but examination of molecular models and assumption of a relationship between $\cos^2({\rm dihedral~angle})$ and coupling constant leads to the assignment of $H_{\rm A}$ as cis to $H_{\rm X}$.

Rearrangement of 4-phenylbut-3-en-2-one phenylhydrazone (I; ${\rm Ar^1=Ar^2=Ph}$) in AcOD showed only a small kinetic isotope effect, $k_{\rm H}/k_{\rm D}$ varied from 1·036 to 1·053 for kinetic runs at three temperatures. Isolation of the product from a rearrangement at $ca.70^{\circ}$ for 5 min. and determination of its n.m.r. spectrum showed that ca. twice as much deuterium had been incorporated into the ${\rm H_A}$ proton into the ${\rm H_B}$ position. A sample of 2-methyl-1,5-diphenyl-2-pyrazoline was stable under these conditions in AcOD but when the mixture was heated under reflux for longer periods the ${\rm H_A}$ and ${\rm H_B}$ protons underwent exchange at the same rate.

The stereoselectivity exhibited in the kinetically controlled enamine-imine tautomerism $[(II) \rightleftharpoons (III)]$ thus parallels the stereoselectivity of enol-ketone tautomerism previously demonstrated in six-membered-ring ketones.³ The preferred direction of proton attack on C-3 is probably *trans* to the phenyl group at C-4.

(Received, January 20th, 1969; Com. 076.)

¹C. H. Jarboe, "The Chemistry of Heterocyclic Compounds", Interscience, London, Part 2, p. 179.

² M. Karplus, J. Amer. Chem. Soc., 1963, 85, 2870.

³ E. J. Corey and R. A. Sneen, J. Amer. Chem. Soc., 1958, 80, 4981 and references therein.