The Crystal Structures of Eight-co-ordinate (Tetrakis-NN-diethyldithiocarbamate) Complexes

By D. Brown,* D. G. Holah, and C. E. F. Rickard
(Chemistry Division, Building 220, A.E.R.E., Harwell, Didcot, Berks.)

Summary The crystal structures of thorium tetrakis(NN -diethyldithiocarbamate) and of tetraethylammonium neptunium tetrakis-($N N$-diethyldithiocarbamate) have been determined.

The preparation and unit-cell dimensions of quadrivalent actinide tetrakis-(NN-diethyldithiocarbamate) complexes of the type $\mathrm{M} \mathrm{dtc}_{4}(\mathrm{M}=\mathrm{Th}, \mathrm{U}, \mathrm{Np}$, and Pu$)$ and of tervalent actinide and lanthanide complexes of the type $\mathrm{NEt}_{4} \mathrm{M} \mathrm{dtc}{ }_{4}$ $(\mathrm{M}=\mathrm{La}-\mathrm{Lu}$ except Pm, Np, and Pu) have recently been reported. ${ }^{1-3}$ I.r. spectral studies have indicated that the $N N$-diethyldithiocarbamate groups are probably bidentate, implying an eight-co-ordinate environment for the central metal atom. Since the co-ordination of eight sulphur atoms to a metal has not previously been recorded it seemed worthwhile investigating the structures of $\mathrm{Th} \mathrm{dtc}_{4}$ and $\mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$.

Figure 1. The co-ordination polyhedron in $\mathrm{Th} \mathrm{dtc}_{4}$ viewed down the crystallographic two-fold axis.

The complexes were prepared as previously described ${ }^{2,4}$ and were recrystallised from anhydrous benzene [Th dtc_{4}] or methylene dichloride [$\mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$]. Th dtc ${ }_{4}$ is monoclinic, space group $C 2 / c, a=19 \cdot 16, b=11 \cdot 74, c=16 \cdot 11 \AA$, $\beta=116.42^{\circ}, Z=4$ and $D_{c}=1.687 \mathrm{~g} . \mathrm{cm} .^{-3} ; \mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$ is monoclinic, space group $P 2_{1} / c, a=11 \cdot 68, b=20.49$, $c=16.11 \AA, \beta=116.5^{\circ}, Z=4, D_{c}=1.532 \mathrm{~g} . \mathrm{cm} .^{-3}$.
Three dimensional X-ray data were collected by the equiinclination Weissenberg technique using $\mathrm{Cu}-K_{\alpha}$ radiation ($\lambda=1.5418 \AA$). The intensities were estimated visually and after application of the usual geometrical corrections 1209 and 1263 nonzero intensities were obtained for $\mathrm{Th} \mathrm{dtc}_{4}$ and $\mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$, respectively. The metal co-ordinates
were deduced from Patterson syntheses and the co-ordinates of the light atoms from subsequent Fourier syntheses. Refinement by full-matrix least-squares has reduced the residuals to $0 \cdot 112$ for $\mathrm{Th} \mathrm{dtc}_{4}$ and 0.117 for $\mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$. Refinement is being continued.

The configuration of the sulphur atoms around the thorium atom is shown in Figure 1 and the configuration about the neptunium atom in Figure 2. In the thorium complex the sulphur atoms are arranged as a distorted dodecahedron. However, the co-ordination polyhedron in the neptunium complex is different from any previously observed eight-co-ordinate polyhedron. It is best regarded as an almost plane pentagonal arrangement of five sulphur atoms, $S(1)-(5)$, with one sulphur atom, $S(6)$, located below, and the remaining two, $S(7)$ and $S(8)$, above, this plane. The neptunium atom is slightly above the plane of the five sulphur atoms.

Figure 2. The co-ordination polyhedron in $\mathrm{NEt}_{4} \mathrm{~Np} \mathrm{dtc}_{4}$.

The mean Th-S and Np-S distances are $2 \cdot 86$ and $2 \cdot 89 \AA$, respectively; the remaining interatomic distances do not differ significantly from those reported for other $N N$ diethyldithiocarbamate complexes. ${ }^{5}$ The mean M-S distances are very similar to the mean U-S distance ($2 \cdot 80 \AA$) recently reported ${ }^{6}$ for the complex $\mathrm{NMe}_{4} \mathrm{UO}_{2} \mathrm{dtc}_{3}$.

We thank F. R. Ahmed for providing computer programs.
(Received, January 9th, 1969; Com. 030.)

[^0]
[^0]: ${ }^{1}$ K. W. Bagnall and D. G. Holah, Nature, 1967, 215, 623.
 2 K. W. Bagnall, D. Brown, and D. G. Holah, J. Chem. Soc. (A), 1968, 1149.
 ${ }^{3}$ J. B. Bibler and D. G. Karraker, Inorg. Chem., 1968, 7, 982.
 ${ }^{4}$ D. Brown and D. G. Holah, Chem. Comm., 1968, 1545.
 ${ }^{5}$ M. Bonamico, G. Dessy, C. Mariani, A. Vaciago, and L. Zambonelli, Acta Cryst., 1965, 19, 619.
 ${ }^{6}$ K. Bowman and Z. Dori, Chem. Comm., 1968, 636.

