The Heat of Formation of the Methylthio-, Ethylthio-, Phenylthio-, and Phenoxy-radicals

By D. H. FINE* and J. B. WESTMORE

(Department of Chemistry, University of Manitoba, Winnipeg, Canada)

WITH a view to assessing the reliability of the available thermochemical data for the key methylthio-, ethylthio-, phenylthio-, and phenoxy-radicals, we have selected a series of analogous oxygen and sulphur compounds and evaluated the dissociation energies of the bonds involving the oxygen and sulphur atoms.

For ΔH_f° (Ph·) we have adopted a recently determined¹ value of 80 ± 1 kcal./mole, although it is significantly higher (5—10 kcal./mole) than was previously assigned.^{2,3} For PhO·, the value of ΔH_f° is calculated to be $10 < \Delta H_f^{\circ} \leq 17$ kcal./mole by combining the ionization potential⁴ of the PhO· radical with the appearance potential of the PhO⁺ ion from methyl phenyl ether⁴ and by using more

precise values of ΔH_{f}° for methyl phenyl ether^{5,6} and the methyl radical.² Natalis and Franklin⁷ suggested a value for ΔH_{f}° (PhO·) = 9 kcal./mole, but due to an arithmetic inconsistency in their calculations little advantage can be gained from updating their results with later more precise data.^{5,8} In agreement with Benson⁹ and Gray¹⁰ we have taken ΔH_{f}° (PhO·) = 13 ± 5 kcal./mole. There is still considerable doubt concerning the heats of formation of the HS·, MeS·, EtS·, and PhS· radicals, and in place of more reliable data we use the literature^{2,11} values: ΔH_{f}° (HS·) = 33 ± 3, ΔH_{f}° (MeS·) = 29 ± 5, ΔH_{f}° (EtS·) = 26 ± 5 and ΔH_{f}° (PhS·) = 50 ± 5 kcal./mole. The heats of formation of Me·, Et·, PhCH₂·, ·OH, and MeO· radicals are

Bond-dissociation energies	(kcal./	(mole)	in RSR	and RO	R compounds
----------------------------	---------	--------	--------	--------	-------------

									-		
R	••		••	R-SH	R-OH	R-SPh	R-OPh	R-SMe	R-OMe	R-SEt	R-OEt
н	• •			90	119	75	89	88	102	88	104
\mathbf{Ph}				86	112	74	86	87	101	87	103
Me	••	••		73	91	60a	67	73	79	73	82
Et				70	91	57	66	70	80	71	82
PhCI	H2	••	••	56	79		-	55	66 ^b	58	

^a Determined directly as a route to ΔH_{f}° (PhS·); ^b estimated value, ref. 20.

taken from Kerr's review² and we use Thynne and Leggett's¹² recent value for the ethoxy-radical, ΔH_f° (EtO) = -4.4 \pm 1 kcal./mole. Except for diphenyl ether,^{13,14} the data for the gas-phase heats of formation of the parent sulphur and oxygen compounds are taken from review articles.^{5,14,15}

The bond dissociation energies calculated from these data are listed in the Table.

Pyrolysis experiments on assymmetrical R¹SR² and R¹OR² compounds offer a test of the validity of comparative bond-dissociation energies. Pyrolyses of methyl phenyl ether,¹⁶ methyl phenyl sulphide,¹⁷ methanethiol,¹⁸ ethanethiol,¹⁸ benzenethiol,¹⁸ and 2-methylpropane-2-thiol¹⁹ give products which are consistent with the initial rupture of the bonds predicted to be the weakest in these molecules.

Primary factors which influence bond-dissociation energies are the nature of the bonded elements, the reorganization which accompanying bond fission, and hybridization or conjugation in the parent compound or the associated free-radicals. In analogous molecules, the dissociation energies involving sulphur atoms are always considerably

lower than for those involving oxygen atoms. This is probably due to a smaller σ -bond energy term for the sulphur-containing molecules. The difference between the bond-dissociation energies involving the ethylthio- and methylthio-radicals are almost the same $(\pm 1 \text{ kcal./mole})$ as the difference between the bond-dissociation energies involving the ethoxy- and methoxy-radicals (Table). Similar comparisons can be made for the phenylthio- and phenoxy-radicals.

The data in the Table appear to be self-consistent. Since the bond-dissociation energies are derived from independent measurements for the heat of formation of the radicals combined with independent heat of combustion data, it would seem that previous authors have over-estimated the possible uncertainties. We conclude that the heats of formation of the methylthio-, ethylthio-, phenylthio-, and phenoxy-radicals are not likely to be in error by more than +3 kcal./mole.

(Received, January 7th, 1968; Com. 015.)

- ¹ A. S. Rodgers, D. M. Golden, and S. W. Benson, J. Amer. Chem. Soc., 1967, 89, 4578.
- ² J. A. Kerr, *Chem. Rev.*, 1966, **66**, 465.
 ⁸ M. J. S. Dewar and H. N. Schmeising, *Tetrahedron*, 1959, **5**, 166; 1960, **11**, 96.
 ⁴ I. P. Fisher, T. F. Palmer, and F. P. Lossing, *J. Amer. Chem. Soc.*, 1964, **86**, 2741.
- ⁵ J. H. S. Green, *Quart. Rev.*, 1961, **15**, 125. ⁶ M. M. Badoche, *Bull. Soc. chim. France*, 1941, **8**, 212.

- ⁷ P. Natalis and J. L. Franklin, *J. Phys. Chem.*, 1965, **69**, 2943.
 ⁸ G. P. Adams, D. H. Fine, P. Gray, and P. G. Laye, *J. Chem. Soc.* (B), 1967, 720.
 ⁹ S. W. Benson, *J. Amer. Chem. Soc.*, 1965, **87**, 972.
- ¹⁰ Peter Gray, personal communication, 1968. ¹¹ H. Mackle, *Tetrahedron*, 1963, **19**, 1159.

- ¹² C. Leggett and J. C. J. Thynne, *Trans. Faraday Soc.*, 1967, 63, 2504.
 ¹³ G. T. Furukawa, D. C. Ginnings, R. E. McCoskey, and R. A. Nelson, *J. Res. Nat. Bur. Stand.*, 1951, 46, 195.
- ¹⁴ D. R. Stull, Ind. and Eng. Chem., 1947, 39, 517.
 ¹⁵ H. Mackle and P. A. G. O'Hare, Tetrahedron, 1963, 19, 961.
- 18 Yu. K. Shaposhnikov and L. V. Kosyukova, Khim. Pererabotka Drevesing., Ref. Inform no. 3, 1965 6-9 (Chem. Abs, 1967, 66, 37557a).
 - ¹⁷ M. H. Back and A. H. Sehon, Canad. J. Chem., 1960, 38, 1076.

 - ¹⁸ A. H. Back and B. H. Sehon, Canad. J. Chem., 1960, 38, 1070.
 ¹⁸ A. H. Sehon and B. deB. Darwent, J. Amer. Chem. Soc., 1956, 76, 4806.
 ¹⁹ C. J. Thompson, R. A. Meyer, and J. S. Ball, J. Amer. Chem. Soc., 1952, 74, 3287.
 ²⁰ S. W. Benson, J. Chem. Educ., 1965, 42, 502.