Alkylaminopentafluorophosphazines¹

By O. Glemser,* E. Niecke, and H. W. Roesky

(Anorganisch-Chemisches Institut de Universität, Göttingen, Germany)

Alkylaminopentafluorotriphosphazenes been obtained in good yield by reaction of hexafluorotriphosphazene and alkylamines; they react with hydrogen halides to give halogenopentafluorotriphosphazenes.

HEXACHLOROTRIPHOSPHAZENE reacts with primary and secondary amines to give alkyl(aryl)aminochlorotriphosphazenes.² Corresponding substitution products of trimeric phosphonitrilic fluoride have not previously been reported.

We have synthesized methyl- (I) and dimethyl-aminopentafluorotriphosphazenes (II) in good yield by reaction of (NPF₂)₃ and H₂NMe or HNMe₂ in ether:

$$(NPF_2)_3 + 2HNR^1R^2 \xrightarrow{-20^{\circ}}$$

 $N_3P_3F_5NR^1R^2 + FH\cdot HNR^1R^2$
 $(R^1 = Me; R^2 = H \text{ or } Me)$

At room temperature, the amines are stable, colourless liquids, b.p. 151° (I), 140° (II).

In a controlled reaction with hydrogen halides the amines give the corresponding monohalogeno-substitution products through the intermediate quaternary aminopentafluorotriphosphazenes:

$$N_3P_3F_5X + XH\cdot HNR^1R^2$$

$$(R^1 = Me; R^2 = H, Me; X = Cl, Br)$$

Chloro- (III) and bromo-pentafluorotriphosphazenes (IV) are

⁴ E. Steger and D. Klemm, J. Inorg. Nuclear Chem., 1967, 29, 1812.

colourless liquids, fuming in moist air; b.p.: 81° (III), 97° (IV). Up to now they have only been prepared by uncontrolled fluorination of (NPCl₂)₃ and (NPBr₂)₃.4 The compounds reported have been characterized by chemical analysis, molecular-weight determination, and mass spectra. All compounds show the molecular ion as the second strongest peak. In the i.r. spectra the strongest absorption bands, corresponding to the asymmetric (P-N-P) vibrations are observed at: 1262 (I), 1268 (II), 1276 and 1270 (III), and 1276 and 1264 cm.-1 (IV). The fluorine n.m.r. spectra show two pairs of complex multiplets centred at the following frequencies (p.p.m. relative to external CFCl₃):

Compound	$\delta^{19} \mathrm{F}(\mathrm{FP})$	$\delta^{19} F(F_2 P)$
(I)	$62 \cdot 5$	70.7
(II)	63.0	70.9
(III)	32.0	71.2
(IV)	20.5	70.8

The proton shifts in the amines (relative to Me₄Si) are:

Compound	$\delta^1 H(CH_3)$	$\delta^1 H(NH)$
(I)	-2.75	-3.70
(11)	-2.78	

Reaction of hexafluorotriphosphazene with methylamine and dimethylamine under vigorous conditions yield substitution products $P_3N_3(\tilde{N}R^1R^2)_nF_{6-n}$ with n > 1. Stronger nucleophiles such as $HNEt_2$ lead to cleavage of the P-N ring system.

(Received, January 27th, 1969; Com. 107.)

- ¹ Previous paper in this series: E. Niecke, O. Glemser, and H. W. Roesky, Angew. Chem., in the press.
- ² R. A. Shaw, Rec. Chem. Progr., 1967, 28, 243.
 ³ A. C. Chapman, D. H. Paine, H. T. Searle, D. R. Smith, and R. F. White, J. Chem. Soc., 1961, 1768; see also, J. Emsley and N. L. Paddock, J. Chem. Soc. (A), 1968, 2590.