An Unusually Complex Phosphazene arising from the Reaction of Hexachlorocyclotriphosphazatriene with Diphenylmagnesium in 1,4-Dioxan

By M. BIDDLESTONE and R. A. SHAW*

[Department of Chemistry, Birkbeck College (University of London), Malet Street, London, W.C.1.]

and D. TAYLOR

(Physical Chemistry Laboratory, South Parks Road, Oxford)

WE recently reported the isolation of a two-ring phosphazene assembly, N₆P₆Ph₂Cl₈,¹ from the reaction of hexachlorocyclotriphosphazatriene, N₃P₃Cl₆, with diphenylmagnesium in 1,4-dioxan. The major product (41%) is compound (I), m.p. 152°, whose elemental analysis and molecular weight indicate the formula N₆P₆Ph₇Cl₅. Compound (I) has a pronounced tendency to crystallise with the inclusion of solvent, e.g. benzene, diethyl ether, or n-hexane It can

12,500 g. Comparison of the ³¹P spectrum of compound (I) with those of reference compounds (studied by means of the above technique)2 such as N₃P₃Cl₆, N₄P₄Cl₈, gem-N₃P₃Cl₄Ph-(NPPh₃), N₃P₃Cl₅(NPPh₃), N₄ and N₄P₄Cl₇(NPPh₃), strengthens the above assignments. We suggest 2,2,4,4,6pentachloro-6-[2,4,4,4-tetraphenyl-2-(2,2,2-triphenylphosphazen-1-yl)diphosphazadien-1-yl]cyclotriphosphazatriene, N₃P₃Cl₅[NPPh₃)₂], as structure for compound (I).

³¹ P Chemical shift from external P ₄ O ₆ (p.p.m.)	Enhancement	$\begin{array}{c} \text{Line width} \\ \text{(Hz)} \end{array}$	Splitting (Hz)	Relative area	Assignment
$\begin{array}{l} + \ 93\cdot2 \pm 0\cdot5 \\ + 105\cdot4 \pm 0\cdot7 \\ + 118\cdot1 \pm 0\cdot5 \\ + 122\cdot6 \pm 1\cdot0 \end{array}$	+1 0 or -ve 0 or -ve 0	$20 \\ 45 \\ 45 \\ 20 - 30$	40 ± 2 s t 1:2:1 40 + 5	2 2 1 1	$\begin{array}{c} P_{\alpha} \\ P_{\delta} \\ P_{\gamma} \\ P_{\beta} \end{array}$

$$\begin{array}{c|c} Cl & \alpha & \beta & Cl & N = PPh_3 \\ Cl & P & N = P-N = PPh_3 \\ N & P & Ph \\ Cl & Cl & Ph \end{array}$$

however be obtained free of solvent by heating to 155° or by recrystallisation from nitromethane or ethyl alcohol. Acid degradation of compound (I) yields triphenylphosphine oxide, Ph₃P:O (2 mol.), phenylphosphonic acid, PhP(:O)(OH)₂ (1 mol.), and phosphoric acid, H₃PO₄ (3 mol.). ³¹P spectrum of this compound (I) has been studied with a nuclear-electron double resonance spectrometer operating at

Reaction of compound (I) with an excess of the sodium salt of 2,2,2-trifluoroethanol affords the corresponding pentakis-(2,2,2-trifluoroethoxy)-derivative, $N_6P_6Ph_7(OCH_2-Ph_2)$ CF₃)₅. The ¹⁹F n.m.r. spectrum (Varian HA 100 instrument) showed three different 19F chemical environments in the ratio of 2:2:1, in agreement with the phosphorusnitrogen skeleton proposed. The high yield of this product (I) arising from such apparently simple starting materials gives some indication of the complexity of this reaction.

We thank the Science Research Council for research grants (to M. B. and R. A. S.), and for a studentship (to D. T.); and Professor R. E. Richards, F.R.S., for providing laboratory facilities (to D. T.).

(Received, December 20th, 1968; Com. 1751.)

¹ M. Biddlestone and R. A. Shaw, Chem. Comm., 1968, 407.

² R. A. Dwek, R. E. Richards, R. A. Shaw, and D. Taylor, J. Chem. Soc.(A), in the press.

³ M. Biddlestone and R. A. Shaw, Chem. Comm., 1965, 205; R. Keat, M. C. Miller, and R. A. Shaw, J. Chem. Soc. (A), 1967, 1404.

⁴ M. Biddlestone and R. A. Shaw, unpublished results.