Evidence for the Production of an Oxidising Radical on Pulse-radiolysis of Methanol

F. S. DAINTON, I. V. JANOVSKY, and G. A. SALMON*

(University of Leeds, Cookridge High Energy Radiation Research Centre, Cookridge Hospital, Leeds, LS16 6QB)

IRRADIATION of aqueous systems causes the formation of approximately equal numbers of reducing (H· and e_{aq}) and oxidising (OH·) radicals.¹ Hitherto the radiation chemistry of the alcohols has been explicable exclusively in terms of

the formation of reducing species $(e_{s}^{-}, H_{\bullet}, and RCHOH)$.² We now report data which prove that an oxidising species, probably MeO_•, is formed during the radiolysis of deaerated methanol.

Solutions of potassium iodide or ammonium thiocyanate in dry methanol were irradiated with $0.6 \,\mu$ sec. pulses of 3 Mev electrons and any transient species was detected by kinetic absorption spectroscopy methods already described.^{3,4}

The absorption spectra observed for a 0.1M-KI solution and a $0.1M-NH_4CNS$ solution following a *ca*. 5 krad electron pulse are shown in Figure 1. The end-of-pulse spectrum

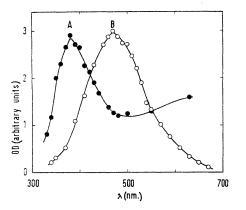


FIGURE 1. End-of-pulse absorption spectra. (A) Methanolic 0.1m-KI solution; (B) Methanolic 0.1m-NH₄SCN solution.

for the iodide solution comprises two peaks with $\lambda_{\rm max}$ 380 ± 5 nm. and 630 nm., which decay at different rates. The peak with λ_{max} 630 nm. decays by a first-order rate law with t_1 ca. 2.5 μ sec. and can be confidently assigned to the solvated electron, $e_s^{.5}$ The peak with λ_{max} 380 nm. correlates well with the absorption spectrum of $\mathrm{I_2^-}$ radical ion,⁶ and this assignment has been confirmed by direct observation of the spectrum of I_2^- when resolutions of iodine in methanol are pulse radiolysed. Similarly, the peak at 470 nm. in the thiocyanate solutions can be identified with the analogous (SCN)2- radical ion.7.8 The formation of these light-absorbing species is attributable to the reaction of I⁻ or SCN⁻ ions with the product formed by the oxidation of I⁻ or SCN⁻ by an oxidant generated by irradiation of methanol. Equations (1) and (2) are the equilibria by which l_2^{-} and $(SCN)_2^{-}$ are formed from their precursors.

$$\mathbf{I} \cdot + \mathbf{I}^- \rightleftharpoons \mathbf{I}_2^- \quad K_1 \tag{1}$$

$$SCN \cdot + SCN^- \Leftrightarrow (SCN)_2^- K_2$$
 (2)

The oridant is probably the methoxy-radical (MeO), which is formed together with $\cdot CH_2OH$ radicals by the

ion-molecule reactions (3a) and (3b), and which is expected to react readily with I^- and SCN⁻ according to equations (4) and (5).

$$MeOH^+ + MeOH \rightarrow MeO_{\bullet} + MeOH_2^+$$
 (3a)

$$\rightarrow$$
 ·CH₂·OH + MeOH₂+ (3b)

$$MeO \cdot + I^- \rightarrow MeO^- + I \cdot$$
 (4)

$$MeO \cdot + SCN^- \rightarrow MeO^- + SCN \cdot$$
 (5)

The initial yields of MeO• and \cdot CH₂·OH are probably about equal.⁴ In the absence of a sufficient concentration of an oxidisable solute the MeO• radicals are converted into the thermodynamically more stable \cdot CH₂·OH radicals, either by the rearrangement reaction (6) or more probably by the hydrogen atom abstraction reaction (7), which has been estimated

$$MeO \cdot \rightarrow \cdot CH_{2} \cdot OH$$
 (6)

$$MeO \cdot + MeOH \rightarrow \cdot CH_2 \cdot OH + MeOH$$
 (7)

to have a rate constant *ca*. 10^4M^{-1} sec.⁻¹ and hence a halflife in liquid methanol of about 4 μ sec.

The dependences of the yields of I_2^- and $(SCN)_2^-$ on $[I^-]$ and $[SCN^-]$ respectively are shown in Figure 2 as the

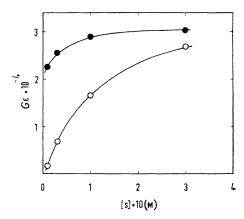


FIGURE 2. Variation of $G \in$ for I_2^- (\odot) and $(SCN)_2^-$ (\odot) with $[I^-]$ and $[SCN^-]$ respectively.

product of the G value (molecules/100 ev) and the molar decadic extinction coefficient at λ_{max} . The yield of I_2^- achieves a plateau value when $[I^-] \simeq 0.1 \text{ M}$, and this suggests that at this concentration of iodide scavenging of MeO• radicals is complete, *i.e.* $k_4 \ge 2 \times 10^6 \text{ M}^{-1}\text{sec.}^{-1}$ and that the equilibrium (1) lies largely to the right. If I_2^- has the same extinction coefficient⁹ as in water (14,000 M⁻¹ cm.⁻¹) then $G(\text{MeO}) \simeq 2.0$ which is close to the value suggested by Theard and Burton¹⁰ to account for the effect of iodide ion on the yields of ethylene glycol and formaldehyde from γ -irradiated methanol. The lack of attainment

of a plateau in the dependence of the yield of $(SCN)_2^-$ on [SCN-] may be due to either $k_5 < k_4$ or a smaller value of the equilibrium constant, K_2 .

The absorption due to $(SCN)_2^-$ decayed by complex kinetics with a first half-life of about 18 μ sec. at the dose used, and within the wavelength region studied no permanent absorption remained after the irradiation. The decay of I_2^- followed approximately a second-order law with $(k/\epsilon) = 1.4 \times 10^6$ cm.sec.⁻¹, but unlike the situation following irradiation of aqueous iodide solutions9 no absorption due to I_3^- or I_2 was detectable after the decay. This result is in accord with the earlier work of Theard and Burton,¹⁰ who observed that no iodine was produced on irradiation of methanolic KI solutions. I_2^- apparently disappears by reaction with $\cdot CH_2 \cdot OH$ according to reaction (8) rather than by the combination reaction (9)

$$I_2^- + \cdot CH_2 \cdot OH \rightarrow HCHO + H^+ + 2I^-$$
 (8)

$$2 I_2^- \rightarrow I_3^- + I^-$$
 (9)

The lack of absorption due to e_{a}^{-} in the ammonium thiocyanate solutions is very probably due to the reaction of e_{s}^{-} with NH_{4}^{+} at the high concentrations of NH_{4}^{+} used in this study.

(Received, February 5th, 1969; Com. 158.)

- ¹ G. V. Buxton, Radiation Res. Rev., 1968, 1, 209.
 ² J. W. T. Spinks and R. J. Woods, "An Introduction to Radiation Chemistry," Wiley, 1964.
 ³ T. J. Kemp, J. P. Roberts, G. A. Salmon, and G. F. Thompson, J. Phys. Chem., 1968, 72, 1464.
 ⁴ F. S. Dainton, G. A. Salmon, and P. Wardman, in course of publication.
 ⁵ F. S. Dainton, J. P. Keene, T. J. Kemp, G. A. Salmon, and J. Teply, Proc. Chem. Soc., 1964, 265.
 ⁶ L. I. Grossweiner and M. S. Matheson, J. Phys. Chem., 1958, 61, 1089.
 ⁷ G. E. Adams, J. W. Boag, and B. D. Michael, Proc. Chem. Soc., 1964, 411.
 ⁸ J. H. Baxendale, P. L. T. Bevan, and D. A. Stott, Trans. Faraday Soc., 1968, 64, 2389.
 ⁹ J. K. Thomas, Trans. Faraday Soc., 1965, 61, 702.
 ¹⁰ L. M. Theard and M. Burton. J. Phys. Chem., 1963, 67, 59.

- ¹⁰ L. M. Theard and M. Burton, J. Phys. Chem., 1963, 67, 59.