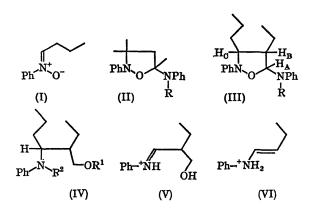
The Structure of N-Alkylidine-N-phenylnitrones

By A. D. BAKER, J. E. BALDWIN,* D. P. KELLY, and J. DEBERNARDIS (Chemistry Department, Pennsylvania State University, University Park, Pennsylvania, 16802)


WHILST working on the structure of Banfield and Kenyon's radical which has recently been reformulated as a result of X-ray analysis,¹ we prepared the compound described at the N-butylidenenitrone (I),^{2,3} by direct condensation of n-butyraldehyde and N-phenylhydroxylamine. The original structure assignment was based on its composition and ready hydrolysis to n-butyraldehyde,² but we observed that the mass spectrum indicated a dimeric constitution, $C_{20}H_{26}N_2O_2$ and, further, the i.r. showed a hydroxy-group, v_{max} 3400 cm.⁻¹. Since this function was acetylated to a monoacetyl derivative v_{max} 1775 cm.⁻¹, we inferred the presence of an N-disubstituted hydroxylamine residue⁴ in the so-called N-butylidenenitrone. As the u.v. spectrum was virtually identical to that of the Banfield and Kenyon

radical precursor (II; R = OH) it seemed likely that (I) was in fact also an isoxazoline, *i.e.* (III; R = OH), and on this basis the n.m.r. spectrum was readily interpreted. Thus H_A occurred as a doublet δ 5·23 (J 5·5 Hz), coupled to a single proton H_B , 154 Hz. upfield,[†] while H_C was a broad multiplet δ 3·30 the result of splitting by H_B and the adjacent nonequivalent methylene group. Proof of the new carbon-carbon bond of structure (III; R = OH) was obtained by reduction with sodium in liquid ammonia to aniline and the amino-alcohol (IV; $R^1 = R^2 = H$); characterized as monoacetate (IV; $R^1 = Ac$, $R^2 = H$), v_{max} 3300 and 1735, and diacetate (IV; $R^1 = R^2 = Ac$), v_{max} 1735 and 1650 cm.⁻¹. The n.m.r. spectrum of the alcohol showed the primary methylene group as a doublet, δ 3·60

[†] Spin decoupling carried out at 100 MHz by Dr. D. W. Turner, whom we thank.

[‡] Satisfactory analyses have been obtained for all new compounds.

(J 6.0 Hz) shifted downfield in the monoacetate, δ 4.16. The mass spectrum of (IV; $R^1 = R^2 = H$) showed the loss of a propyl group to m/e 178 (V) (amine fragmentation)⁵ and sequential loss of formaldehyde to m/e 148 (VI) (McLafferty rearrangement).6 In keeping with the new formulation as the isoxazolidine (III; R = OH), it was oxidized with silver oxide to an unstable nitroxide (III; R = O) λ_{max} (EtOH) 277, 284, 292, and 302 nm., equivalent to that of the more stable (II; R = O), We suspect that this type of aldol product will be commonly observed in the condensation of N-phenylhydroxylamine with carbonyl compounds, the acid-catalysed reversal of which affords ready explanation of the formation of n-butyraldehyde used in the original structure proof.²

(Received, January 27th, 1969; Com. 113.)

- ¹ R. Foster, J. Iball, and R. Nash, Chem. Comm., 1968, 1414.

- ¹ G. E. Utzinger and F. A. Regenass, *Helv. Chim Acta*, 1954, 37, 1892.
 ³ G. Renner, Z. analyt. Chem., 1963, 193, 92.
 ⁴ G. Zinner, Chem. Ber., 1958, 91, 302.
 ⁵ G. A. Junk and H. J. Svec, J. Amer. Chem. Soc., 1963, 85, 839.
 ⁶ K. Biemann, "Mass Spectrometry," McGraw-Hill, New York, 1962, p. 125.