Nitrogen-14 Nuclear Magnetic Resonance Studies of Trifluoramine Oxide, Nitrogen Trifluoride, and Related Compounds

By JOAN (BANUS) MASON*

(School of Chemical Sciences, University of East Anglia, Norwich NOR 88C)

and W. VAN BRONSWIJK

(William Ramsay and Ralph Forster Laboratories, University College, London, W.C.1)

TRIFLUCRAMINE OXIDE,¹⁻³ ONF₃, is an unusual amine oxide, with NF₃ a non-basic amine. The NO stretching frequency, 1690 cm.⁻¹, resembles the 1600 cm.⁻¹ found in CF₃NO⁴ rather than the 950—970 cm.⁻¹ in the amine oxides R_3N^+ –O⁻ (formed by the more basic amines). This double-bond character in ONF₃ is attributed¹ to delocalisation of lone-pair (in this case n_0) electrons into NF σ^* orbitals, as in CF₄ and chlorofluoromethanes, enhanced by the higt effective electronegativity of the nitrogen.

We have measured the ¹⁴N n.m.r. shifts of ONF₃, and of NF₃, NOF, NO₂F, CF₃NO, and CF₃NO₂, with wide-line (Varian 4300B) equipment, and nitromethane as external reference. Relative to saturated aqueous nitrite ion, the shifts (in brackets, line-widths at half-height) in p.p.m. are: ONF₃, +376 (208) at -120° ; NF₃, +238 (225) at -130° ; NOF, +128 (90) at -60° to -105° ; NO₂F, +297 (52) at -65° to -155° . The spin-spin structure is not resolved. The shift for CF₃NO is -193 (140) at -90° to -130° , and for CF₃NO₂ (preliminary value) +225 (35) at -60° . The ¹⁹F resonance for NO₂F is -221 p.p.m. from CFCl₃ at -60° .

The Figure compares the ¹⁴N shift, on removal of the oxygen from nitrogen in ONF_3 to leave : NF_3 , with corresponding shifts for related compounds. The alkylamines,⁵ ammonia,⁵ and ammonium ions,⁵ with trimethylamine oxide^{5,6} and hydroxylammonium ions,⁵ clearly form a class of their own. All the other compounds have nitrogen resonances at lower field, and show systematic downfield shifts on removal of the oxygen atom, to leave NF_3 , or a

nitrosyl or nitroso-compound (aromatic† or aliphatic $C \cdot \dot{N} : O, R_2 N N O^7$); nitrite ion or RONO†; $N_2 O_3$,⁷ an azine,⁵ or a furazan,⁶ or even nitrogen⁸ (liquid, compared with $N_2 O^8$).

Theory⁹ shows that the de-shielding mainly depends on the magnetic excitation of electronic states, involving rotation of charge, e.g. $n \to \pi^*$ or σ^* , σ or $\sigma^* \longleftrightarrow \pi$ or π^* , and is inversely proportional, roughly, to the energy ΔE of the most accessible of these, often $n \to \pi^*$, or $n \to \sigma^*$ if there is no π^* orbital. This ΔE varies from ca. 10 ev for saturated molecules, resonating at high field, to ca. 2 ev for the blue C-nitroso-compounds, at very low field.

The methylamines and ammonia have ¹⁴N resonances within a small range, 10—15 p.p.m., at high field. The shift on protonation is very small and downfield, showing that the $n_{\rm N}$ electrons are not active in paramagnetic de-shielding. Addition of oxygen at the nitrogen lone pair moves the resonance downfield by nearly 100 p.p.m., due to the inductive effect on the diamagnetic shielding, to $\sigma \rightarrow \sigma^*$ transitions between CN and NO bonds, and to $n_0 \rightarrow \pi^*$ states. In all other cases, the removal of oxygen from nitrogen to leave a lone pair, like the de-protonation of azines,^{5,10} allows de-shielding by $n_{\rm N} \rightarrow \pi^*$ or σ^* excitation (cf. pyridine, the N-oxide, and N-hydroxonium ion⁵).

The XNO₂ compounds, with no n_N electrons, have rather similar shifts (Figure), showing a similar effect at nitrogen of the $\sigma \to \pi^*$ transitions. In contrast the X·N:O line

† Measured by L.-O. Andersson, Varian Research Laboratory, Zürich.

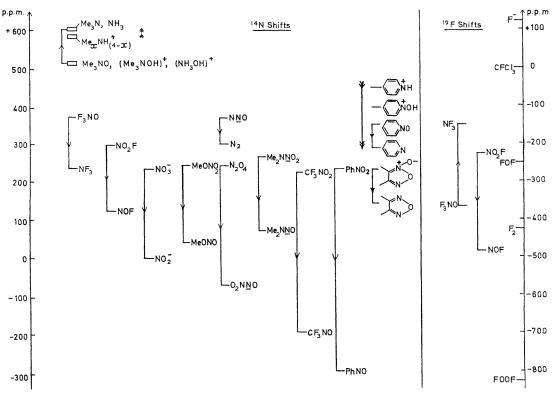


FIGURE. S shifts on removal of O from N: (\longrightarrow) and on deprotonation: (\gg) .

moves upfield as the $n_{\rm N} \rightarrow \pi^*$ band shifts to higher frequency with increasing inductive stabilisation of the lone pair, in the order C·NO $< O_2 NNO < NO_2^- < NOF < NF_3$; and in RONO, R₂NNO, and NOF, also with raising of the π^* orbital by inflow of n_x electrons.

In NF₃, $n \to \sigma^*$ excitation can explain the de-shielding relative to NH_3 and the amines (although the u.v. spectrum of NF_3 is rather featureless)¹¹. The NF σ^* orbitals must be quite low in energy as the bond is rather weak; $D(F-NF_2)$ is 57 kcal.mole.⁻¹, the radical NF_2 being rather stable.

The upfield shift of ONF₃ relative to the XNO₂ compounds probably reflects a smaller $\sigma \to \pi^*$ separation in XNO₂ as compared with the $\sigma_{NO} \to \sigma_{NF}^*$ separation in ONF₃; the latter is increased if n_0 electrons move into σ^* orbitals. But the N-F bond in ONF₃ is weaker than in NF₃³ and breaks before the N-O bond, in the mass spectrometer and in chemical reactions.¹ The pattern of the shifts

illustrates the difference between the N-O bond in ONF₃ and a true double bond, as in the $C \cdot N : O$ compounds.

In ¹⁹F resonance, transitions of $n_{\rm F}$ (π -type) electrons are now the most important.⁹ NOF is downfield from NO,F, but NF₃ is upfield from ONF₃. The downfield shifts correlate, at lower fields, with the weakness of the bond to fluorine, *i.e.* with a lowering of the σ^* orbitals, and perhaps with de-stabilisation of the n_F electrons. FO-OF has a very long O-F bond¹² and a very low-field ¹⁹F line,¹³ and is coloured (also at -196°).¹⁴

We thank Dr. W. B. Fox, of Allied Chemical Corporation, for gifts of ONF_3 and NF_3 , Dr. R. Schmutzler for NOF, Dr. J. M. Shreeve for NO₂F, Professor H. J. Emeléus for NF₃, Dr. P. M. Spaziante for CF₃NO; and the S.R.C. for support.

(Received, December 6th, 1968; Com. 1668.)

1 W. B. Fox, J. S. MacKenzie, N. Vanderkooi, B. Sukornick, C. A. Wamser, J. R. Holmes, R. E. Eibeck, and B. B. Stewart, J. Amer. Chem. Soc., 1966, 88, 2604; W. B. Fox, J. S. Mackenzie, E. R. MacCarthy, J. R. Holmes, R. F. Stahl, and R. Juurik, Inorg. Chem., 1968, 7, 2064.

- ¹⁰⁵, 7, 2004.
 ² N. Bartlett, J. Passmore, and E. J. Wells, Chem. Comm., 1966, 213.
 ³ E. E. Curtis, D. Pilipovich, and W. H. Moberly, J. Chem. Phys., 1967, 46, 2904.
 ⁴ J. Mason and J. Dunderdale, J. Chem. Soc., 1956, 754.
 ⁵ D. H.-Evans and R. E. Richards, Mol. Phys., 1964, 8, 19.
 ⁶ G. Englert, Z. Elektrochem., 1961, 65, 854.
 ⁷ L. Chem. Long. Macon. Chem. Comm. 1968, 90.

- ¹⁰ L. O. Andersson and Joan Mason, Chem. Comm., 1968, 99.
 ⁸ J. E. Kent and E. L. Wagner, J. Chem. Phys., 1966, 44, 3530.
 ⁹ A. Saika and C. P. Slichter, J. Chem. Phys., 1954, 22, 26; J. A. Pople, Mol. Phys., 1963, 7, 301, and refs. therein.
 ¹⁰ V. M. S. Gil and J. N. Murrell, Trans. Faraday Soc., 1964, 60, 248.
- ¹¹ S. R. la Paglia and A. B. F. Duncan, J. Chem. Phys., 1961, 34, 1003.
- ¹² R. H. Jackson, J., 1962, 4585.
- ¹³ N. J. Lawrence, J. S. Ogden, and J. J. Turner, Chem. Comm., 1966, 102.
- ¹⁴ A. D. Kirshenbaum and A. G. Streng, J. Chem. Phys., 1961, 35, 1440.