Investigation by means of Nuclear Magnetic Resonance Spectroscopy of Geometric Isomerism in some α-Benzamidocinnamates and their Related Azlactones

By A. P. MORGENSTERN, C. SCHUTIJ, and W. Th. NAUTA*

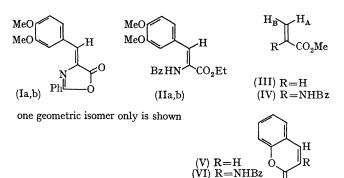
(Chemical Laboratory Vrije Universiteit, De Lairessestraat 174, Amsterdam, The Netherlands)

Summary Determination of the magnitude of the benzamido-substituent effect on the signal of a *cis*-olefinic proton in the n.m.r. spectrum, leads to the assignment of the *trans*-configuration to the stable geometric isomers of the title compounds.

THE stable isomer of 4-benzylidene-2-phenyl-2-oxazolin-5-one obtained in the Erlemeyer-Plöchl synthesis has been variously claimed to be the *cis*-¹ or the *trans*-² isomer. Some r.m.r. spectroscopic results support the *cis*-configuration,² whilst the n.m.r. spectra both of the two isomers of ethyl α -benzamido-3,4-dimethoxycinnamate (IIa) and (IIb) and of other model compounds lead us to believe that the *trans*-assignment is correct. The stable azlactone $[(Ia) (m.p. 149\cdot5-151^{\circ})]^3$ was converted with concentrated hydrobromic acid into the metastable geometric isomer $[(Ib) (m.p. 147\cdot5-148\cdot5^{\circ})]$. Hydrolysis of (Ia), followed by esterification, yielded $[(IIa) (m.p. 118-119\cdot5^{\circ})]^3$ and basic alcoholysis of (Ib) yielded (IIb) (m.p. 141-142^{\circ}). In this conversion of azlactones into cinnamates no change occurs in the geometric configuration.^{1,2} The n.m.r. spectral data are listed in the Table.

The $[\beta^{-2}H]$ azlactones and esters were synthesized from 3,4-dimethoxy $[\alpha^{-2}H]$ benzaldehyde† in order to determine the exact value of the chemical shift of H_{β} . To determine the structures of (IIa) and (IIb) by n.m.r. spectroscopy it is necessary to know the magnitude of the substituent effect

[†] Prepared by reduction with LiAlD₄ (T. Axenrod, L. Loew, and P. S. Pregosin, J. Org. Chem., 1968, 33, 1274) of N-t-butyl-3,4dimethoxybenzamide (m.p. 126-128°), followed by hydrolysis. of the α -benzamido-group on the signal of $H_{\beta^{2,5}}$ (in orthosubstituted N-acylanilines there is a sharply increased deshielding of the proton ortho to the acylamine group⁶). In order to establish a reliable value for this effect, the n.m.r. spectra of the compounds (IV)[‡] and (VI)[§] were determined.


on the H_{β} signal as a result of the introduction of the α benzamido-substituent, is included in the value of Δ .

Choice of (A) defines the position of the β -proton signals in the n.m.r. spectrum of (IV). The chemical shifts of H_{β} in (IIa) and (IIb) could be calculated by adding the chemical shifts of H_A (δ 6.01) and H_B (δ 6.80) to the value of the

Compound H _β					$\mathrm{H}(2)$ b	H(5)	H(6)		-NH	-OCH3
(Ia)	7.15	••			8.14	6.93	7.56	c		3.94:4.00
(Ib)	7.48				8.36	6.90	7.52	е		3.93: 3.99
(IIa)	7.44			• •	7.11	6.79	7.10	e	7.7 - 8.1	3.64; 3.82
(IIb)	8.00	• •		••	ca. 6.90	ca. 6·90	ca. 6·90	đ	8.37	3.85; 3.88
(III)	5·82(H	B); 6.38	8(H _A)					e		
(IV)	6.01;6	•80	••	••				f		
(VI)	8.83(4-	positio	n)	••					8.7 - 9.0	

TABLE⁸

^a The spectra were measured with a Varian A-60A (CDCl₃, ca. 38°). The chemical shifts are expressed in δ values (p.p.m.) relative to internal Me₄Si; ^b aromatic protons of the 3,4-(MeO)₂C₆H₃⁻ring; the protons of the Ph-ring appear in the range δ 7.7–8.3 (2 H) and δ 7.3–7.7 (3 H); ^c $J_{2,6} = 2$ c./sec., $J_{5,6} = 8$ –9, and $J_{2,5} = 0$ c./sec.; ^d 6.90 is the centre of a multiplet δ 6.85–6.95, corresponding to 3 H. ^e Varian spectra catalogue, spectrum No. 64. ^f Coupling of the δ 6.01-proton, probably with -NH (J = 1–2 c./sec.).

A comparison of the n.m.r. spectra of (III) and (IV) (Table) showed that there are two ways of estimating the benzamido-substituent effect in the cis- (Δ_{cis}) and in the trans-position (Δ_{trans}) with respect to H_{β} : (A) chem. shift $H_{A} = \delta$ 6.01 and $H_{B} = \delta$ 6.80, *i.e.* $\Delta_{cis} = +$ 0.98 and $\Delta_{trans} = -$ 0.37; (B) chem. shift $H_{A} = \delta$ 6.80 and $H_{B} = \delta$ 6.01, i.e. $\Delta_{cis} = +$ 0.19 and $\Delta_{trans} = +$ 0.42.

The n.m.r. spectrum of the 3-benzamidocoumarin (VII), when compared with that of the coumarin (V) is a test of these two possibilities. The 4-proton in coumarin resonates at δ 7.807. Introduction of a 3-benzamido-group shifts this signal to δ 8.83, therefore $\Delta_{cis} = +$ 1.03; this value agrees well with the substituent effect calculated by method (A).

The change of the substituent effect of the -CO₂R-group

substituent effect of the β -dimethoxyphenyl group on H_{β} . By using Pascual's⁵ substituent effect (+1.35) of an arylgroup on an olefinic proton in the α -position, values of δ 7.36 and δ 8.15 are obtained. From the good agreement with the values found (δ 7.44 and δ 8.00) it may be concluded that what has been established for compound (IV), is also true for (IIa) and (IIb): the proton at the lowest field is cis to the benzamido-group and the proton at higher field occupies the trans-position. It follows that in the stable ester (IIa) the dimethoxyphenyl-group is trans to the -CO₂Et group; one of the methoxy-groups (δ 3.64) lies in the shielding region of the phenyl nucleus of the benzamidogroup. In (IIb) the aryl-group is cis to -CO₂Et.

When the values of Δ_{cis} and Δ_{trans} [assumption (A)] are used to calculate, on the basis of the chemical shift of H_{β} in the cis- and trans methylcinnamates,² the shift of H_{β} in the corresponding *a*-benzamido-derivatives, good agreement with the n.m.r. data² is obtained; the cis-trans assignment should, however, be inverted.

Thus, we conclude that in the azlactone (Ia) the dimethoxyphenyl nucleus is *trans* to the oxazolone carbonyl. In addition to a strong deshielding effect of the oxazolone ring on H(2) and H(6), the n.m.r. spectra of the azlactones show that, under the deshielding influence of cis -N=C.Ph-, the H_{β} signal shifts more downfield than when it is *cis* to the C = 0.

We thank Dr. O. S. Akkerman for valuable discussion; he and Miss W. H. E. M. Kronenburg, also measured the n.m.r. spectra.

(Received, January 29th, 1969; Com. 126.)

 \ddagger Synthesis: *a*-benzamidoacrylic acid (T. Wieland, G. Ohnacker, and W. Ziegler, *Chem. Ber.*, 1957, 90, 194) was converted into the silver salt, which gave with CH₃I in ether the methyl ester. § M.p. 176°; obtained as a by-product in the reaction of salicylaldehyde with hippuric acid (E. Erlenmeyer, jun., and W. Stadlin,

¹ R. Filler, Adv. Heterocyclic. Chem., 1965, 4, 95.

Annalen, 1904, 337, 283).

 ² K. Brocklehurst, H. S. Price, and K. Williamson, Chem. Comm., 1968, 884.
³ J. S. Buck and W. S. Ide, Org. Synth. Coll. Vol. 2, 1943, 55; H. J. Harwood, T. B. Johnson, J. Amer. Chem. Soc., 1934, 56, 468.
⁴ R. Filler, K. B. Rao, and Y. S. Rao, J. Org. Chem., 1962, 27, 1110; S. Tatsuoko and A. Morimoto, J. Pharm. Soc. Japan, 1950, 70, R. Filler, M. B. Rao, and Y. S. Rao, J. Org. Chem., 1962, 27, 1110; S. Tatsuoko and A. Morimoto, J. Pharm. Soc. Japan, 1950, 70, ⁶ C. Pascual, J. Meier, and W. Simon, *Helv. Chim. Acta*, 1966, 49, 164.
⁶ M. Zanger, W. W. Simons, and A. R. Gennaro, *J. Org. Chem.*, 1968, 33, 3673.
⁷ T. J. Batterham, J. A. Lamberton, *Austral. J. Chem.*, 1964, 17, 1305.